
LEBANESE UNIVERSITY
Faculty of Technology

Master of Information System Engineering
Laboratory of Embedded and Networked Systems

Energy-Efficient Fault-Tolerant Scheduling for

Hard Real-Time Systems

Master Thesis

LAMIS ABOU DARWISH

Advisor: Dr. Hussein EL GHOR
Co-advisor: Dr. Haissam HAJJAR

Saida, 2018

Laboratory of Embedded and Networked Systems

LEBANESE UNIVERSITY
Faculty of Technology
Master of Information System Engineering
Laboratory of Embedded and Networked Systems

Energy-Efficient Fault-Tolerant Scheduling for

Hard Real-Time Systems

Master Thesis

LAMIS ABOU DARWISH

Advisor: Dr. Hussein EL GHOR
Co-advisor: Dr. Haissam HAJJAR

Approved by Date:.

(Signature) (Signature) (Signature)

. .
Dr. Hussein EL GHOR Dr. Haissam HAJJAR Dr. Mohamed HAJJAR

Saida, 2018

Acknowledgements

I would like to thanks all the people that in some way have helped me with the elaboration of
this thesis.

First, I would like to thanks to my advisor, Dr. Hussein EL GHOR, for all the help, support,
and amiability. He has been an excellent advisor. Sometimes he has shown me the way in those
dark days of the academy work, discovering when I have been lost and pulling me when I have
needed.

I would like also to thanks to my family. They are all that I have! My mom had always seen
me as a superstar, my nephews always spoiling my homework but in a good way and my brother
and sister breaking their heads thinking why I spend a lot of time doing these strange things. All
of them had encouraged me to follows this way without stopping in the difficult moments that
always are there no matter where you are.

I would like to thanks to the master committee and ordinator and especially to the dean of
the Faculty of Technology professor Mohamed Hajjar for all the help, support, and amiability.

Although it is difficult to list them, I would like to thanks to all my friends. They always have
been there with a good hand extended for me without taking care of my bad mood. Especially, I
would like to thanks to the master group. They have welcomed me and I have learned something
from all of them.

Finally, I would like to thanks to the Lebanese University and the Faculty of Technology, the
crazy place where I have spent a lot of time with the propose of complete this puzzle.

Saida, 2018

Lamis Abou Darwish

1

Abstract

For the past several decades, we have experienced tremendous growth of real-time systems and
applications largely due to the remarkable advancements of IC technology. However, as transistor
scaling and massive integration continue, the dramatically increased power/energy consumption
and degraded reliability of IC chips have posed significant challenges to the design of real-time
systems.

Fault tolerance in underlying hardware is of paramount importance on the reliability of real-
time safety-critical systems especially due to the continuously decreasing feature size. In such
systems, fault tolerant techniques must respect the timing constraints of the task set in a way
that faults have to be detected and appropriate recovery operations must be completed before the
deadlines. Conceivably, guaranteeing the reliability of computing systems has also been raised to
a first-class design concern.

In addition, the power consumption of battery-operated portable embedded systems have been
dramatically increased which further degraded the system reliability and hence posed additional
significant challenges to the design of real-time systems. Recent research on real-time autonomous
systems has focused on developing advanced scheduling methods on hard real-time systems that
are subject to multiple design constraints, in particular, timing, energy reduction, and reliability
constraints. Extensive power management techniques have been developed on energy minimiza-
tion so as to maximize the lifetime achieved as in classical battery operated devices. Among these
techniques, the most commonly popular and widely used and traditional approach is dynamic volt-
age and frequency scaling (DVFS). However, using energy management techniques such as DVFS
has made reliability issues to be exacerbated. Hence, energy management and fault-tolerance are
two conflicting key objectives in the design of efficient real-time embedded systems.

This thesis targets the problem of designing energy efficient fault-tolerant real-time scheduling
algorithms for independent aperiodic tasks on a uniprocessor platform. To this end, we must
first investigate the energy management problem with fault-tolerance requirements for hard real-
time tasks on a single-core processor that is powered by an energy storage unit and uses DVFS
technique to reduce the energy consumption and hence prolong the systems lifetime.

Keywords

Real-time systems, fault tolerance, energy manangement, scheduling, renewable energy.

3

To my family and friends.

Contents

Acknowledgements 1

Abstract 3

1 General Introduction 1

2 State of Art 5
2.1 Real-time Systems . 5

2.1.1 The Concept of Real-Time . 5
2.1.2 Specificities of Real-Time Systems . 5

2.1.2.1 Definitions and Major Characteristics 5
2.1.2.2 Taxonomy of Real-Time Systems 6

2.1.3 Characterization and Modeling of Real-Time Tasks 7
2.1.3.1 Definitions . 7
2.1.3.2 Job Model . 8
2.1.3.3 Modeling Real-Time Tasks . 9

2.1.3.3.1 Model of Periodic Tasks 9
2.1.3.3.2 Model of Aperiodic Tasks 10

2.2 Formulation of the Real-Time Scheduling Problem 10
2.2.1 Categories of Real-Time Scheduling . 11
2.2.2 Properties of Scheduling Algorithms . 12

2.3 Scheduling of Periodic Tasks . 13
2.3.1 Scheduling with Fixed Priorities . 13

2.3.1.1 Rate Monotonic Algorithm . 13
2.3.1.2 Deadline Monotonic Algorithm . 14

2.3.2 Scheduling with Dynamic Priorities . 14
2.3.2.1 Earliest Deadline First Algorithm 14

2.4 Conclusion . 15

3 Real-Time Scheduling Under Energy Constraints 17
3.1 Embedded Systems . 17

3.1.1 Definition . 17
3.1.2 Wireless Sensor Network (WSN) . 18

3.2 Energy Storage . 19
3.2.1 Energy Storage Elements . 19

7

CONTENTS

3.2.1.1 Battery . 19
3.2.1.2 Supercapacitor . 20

3.3 Problem of Autonomy of Embedded Systems . 21
3.3.1 Need for New Terminology . 21

3.3.1.1 Scheduling with energy clairvoyance: 21
3.3.1.2 Scheduling with time clairvoyance: 21
3.3.1.3 Total clairvoyant scheduling: . 21
3.3.1.4 Temporally feasible scheduling: . 21
3.3.1.5 Schedulable task configuration: . 21

3.3.2 Need for a Task Model Adapted to Energy Constraints 21
3.3.3 Need for Specific Scheduling Policies . 21

3.4 Existing Scheduling Policies . 22
3.4.1 Approaches to Minimize Energy Consumption 22

3.4.1.1 Dynamic Power Management (DPM) 23
3.4.1.2 Dynamic Voltage and Frequency Scaling (DVFS) 23

3.4.2 Approach to Energy Autonomy . 23
3.4.2.1 Optimal LSA Scheduling Algorithm 24
3.4.2.2 EDeg Scheduling Algorithm . 24

3.4.2.2.1 Principle of EDeg: . 24
3.4.2.2.2 Description of the Algorithm: 25
3.4.2.2.3 Performance of the EDeg Scheduler: 25

3.5 Energy Saving-Dynamic Voltage and Frequency (ES-DVFS) Algorithm 26
3.5.1 Computing the Minimum Constant Speed for Each Job 26

3.6 Conclusion . 28

4 Fault-Tolerant Real-Time Systems 29
4.1 Introduction . 29
4.2 Background on Fault Tolerance . 31
4.3 Fault Tolerant Techniques . 33
4.4 Previous Work . 35
4.5 Summary . 38

5 Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems 39
5.1 Introduction . 39
5.2 Related Work . 41
5.3 Model and Terminology . 42

5.3.1 Task Model . 42
5.3.2 Power and Energy Model . 42
5.3.3 Energy Storage Model . 43
5.3.4 Fault Model . 43
5.3.5 Terminology . 44
5.3.6 Problem Formulation . 44

5.4 Fault Tolerant Speed Schedule . 45

8

CONTENTS

5.4.1 Overview of the Scheduling Scheme . 45
5.4.2 Concepts for the EMES-DVFS Model . 46
5.4.3 Description of the EMES-DVFS Scheduler 48
5.4.4 Feasibility Analysis . 48

5.5 Simulation Results . 52
5.5.1 Experiment 1: Energy Consumption by Varying the Number of Jobs 53
5.5.2 Experiment 2: Energy Consumption by Varying the Number of Faults . . . 54
5.5.3 Experiment 3: Energy Consumption by Varying Pind 55
5.5.4 Experiment 4: Percentage of feasible Job Set 55

5.6 Conclusions . 56

Conclusions 59

9

List of Figures

2.1 Different possible states for a real-time task . 7
2.2 Model of a job . 9
2.3 Model of a periodic task . 10
2.4 Model of an aperiodic task . 11
2.5 Scheduling by EDF . 14

3.1 Example of a self-contained wireless sensor system 18
3.2 Scheduling by EDF under energy constraints . 22

5.1 Energy savings by varying the numbers of jobs, k = 1. 53
5.2 Energy savings by varying the numbers of faults. 54
5.3 Energy savings by varying Pind. 55
5.4 Percentage of feasible job set. (a) Low processor load. (b) High processor load. . . 56

11

List of Tables

Chapter 1

General Introduction

Nowadays, embedded systems are becoming increasingly important in our lives. In these
embedded devices, the management of energy is a crucial issue. They are more and more

varied and appear in extremely diverse sectors such as transport (avionics, cars, buses, ..), mul-
timedia, mobile phones, game consoles, etc. A large part of embedded systems have needs for
autonomy and limitations of space (small size) and energy (limited consumption). As a result, the
major technological and scientific challenge is to build systems of trust from the point of view of
the functionalities provided and the rendered quality of service. It’s more about designing these
systems at an acceptable cost.

Having drawn heavily on fossil fuel reserves (oil, coal, ..), the use of renewable energies (solar,
wind, ..) is proving to be an alternative of choice to feed many systems. For example, for a cell
phone whose battery stores a limited amount of energy and can be recharged periodically by its
user, the problem here is to minimize the consumed energy so as to maximize its autonomy. Such
a problem is usually treated by Dynamic Voltage and Frequency Scaling (DVFS) methods that
affect the speed of the processor, which directly affects the energy consumption of the system.
However, this assumes that the used processors in this kind of platform support various operating
frequencies. Moreover, many new generation portable embedded systems limit or even prohibit
human interventions, particularly because they are difficult to access because of the environment
in which they operate (example surveillance application of a forest or motorway area), or because
they are deployed in very large numbers (example dense wireless sensor network for an accurate
topographic survey). These systems then operate more and more often with batteries and / or
supercapacitors that recharge continuously with a renewable energy source such as solar energy.
Designing such fully autonomous, embedded systems, however, requires the resolution of a number
of problems related to the harvesting of ambient energy, its storage and its use, so as to ensure
sustainable autonomy, while maintaining a respect for the temporal constraints of the treatment
system.

However, the use of renewable energy to power a portable embedded system induces a num-
ber of problems related to the characteristics of embedded computing and electronics. Indeed,
the singularity of an embedded system lies in its operation in real time: it is subject to tempo-
ral constraints attached to the realization of the various activities that it must implement and
that consume energy. In so-called critical applications, not only the non-respect of these time
constraints can affect the rendered quality of service, but it can in certain critical applications
be unacceptable because generating the final shutdown of the system will further degradate the

1

used hardware or even loss of human lives. When an embedded system has no energy constraint,
the major problem to be solved during its design will consist in verifying the feasibility of the
application with regard to the temporal specifications, the processing capacities of the hardware
architecture used and the needs in processing time of the application software. This problem is
well known, studied for forty years. The underlying problem is a classic scheduling problem where
only the "time" dimension is studied and can be reduced to optimizing a quantity called Quality
of Service (QoS). Until very recently, it was assumed that energy was not a constraint. This was
supposed to be available in sufficient quantity to ensure the functioning of the system over the
entire lifetime of the application. Previous scheduling algorithms can no longer be suitable for an
embedded system powered by a renewable energy source and using a small battery whose level
fluctuates over time depending on the recovered amount of energy.

At the same time, it is observed that as embedded real-time systems become more and more
complex, the required level of reliability for such systems appears to be another open problem.
Many of these systems tend to be situated at harsh, remote or inaccessible locations. Consequently,
it is often difficult and sometimes even impossible to repair and to perform maintenance. This
necessitates the use of fault-tolerant techniques. Fault-tolerant computing refers to the correct
execution of user programs and system software in the presence of faults [1]. A system is more
reliable if it can cope with fault cases and can be fault-tolerant in the presence of faults. The
timing constraints of the real-time applications can be satisfied using appropriate task scheduling
and the required level of reliability can be achieved by means of fault-tolerance. In the case of an
energy-autonomous system, reliability also means ensuring that the system will never be short of
energy to ensure its treatment. Anticipation of possible cases of energy can, again, be implemented
on the basis of the flexibility offered by the system at the level of the execution of the tasks.

As part of this thesis, we are interested in the problem of real-time scheduling under reliability
and energy constraints. It’s about considering real-time tasks that have needs that are expressed
on the one hand in terms of processing time and energy consumed by the processor and on the
other hand in terms of the number of tolerated faults. A task configuration is energy overloaded,
this means that the amount of energy consumed is greater than the amount of energy available.
In additon, the amount of execution time requested is smaller than the available capacity, the
system will therefore typically be able to meet all its deadlines or else catastrophic consequences
will occur. A major question that needs to be answered is: how to schedule real-time tasks in
case of energy where the system keeps reliable and able to tolerate up to k faults.

To answer this question, a uniprocessor Earliest Deadline First (EDF) scheduling algorithm is
first analyzed to derive an efficient and exact feasibility condition by considering energy man-
agement and fault-tolerance. Second, a scheduling algorithm is designed to achieve energy-
autonomous utilization of the processor while meeting the task deadlines and while considering
that the system is fed by a renewable energy source. The goal of the former algorithm is to achieve
reliability while the goal of the latter algorithm is to achieve a high performance. In this thesis,
it is also discussed how to blend these two metrics into the same scheduling framework.

To this end, our target is to investigate the energy managemt problem with fault-tolerance
requirements for dynamic-priority based hard real-time tasks on a single-core processor. We
develop scheduling algorithms to judiciously make tradeoffs between fault tolerance and energy
management since both design objectives usually conflict with each other.

2

Chapter 1. General Introduction

Our thesis is organized as follows:
Chapter 2 introduces concepts and algorithms for scheduling in real-time systems at first. Then,
in a second step, we present the concepts and factors interfering in the schedulability test. We
focus on on-line scheduling for uniprocessor systems. After that, we direct our work to the state
of art related to scheduling of periodic tasks.
Chapter 3 proposes the concept of real-time energy harvesting systems. First, we describe the
embedded systems and more precisely the wireless sensor networks. At present, these consti-
tute the majority of embedded applications built around autonomous systems from the energy
point of view. Then, we focus on the storage and extraction of renewable energy to power these
autonomous systems. We describe a state of the art about technologies associated with energy
recovery. After that, we describe the problem of energy autonomy in a system often described as
energetically neutral. Finally, we describe different scheduling techniques with the aim of mini-
mizing energy consumption and then aiming to perform an energetically autonomous system.
Chapter 4 introduces the problem of fault-tolerance in real-time systems, scheduling tasks char-
acterized not only by an execution duration constrained by time but also by needs in energy to
realize this execution. First, we describe the embedded systems and more precisely the wireless
sensor networks. At present, these constitute the majority of embedded applications built around
autonomous systems from the energy point of view. Then, we focus on the storage and extraction
of renewable energy to power these autonomous systems. We describe a state of the art about
technologies associated with energy recovery. After that, we describe the problem of energy auton-
omy in a system often described as energetically neutral. Finally, we describe different scheduling
techniques with the aim of minimizing energy consumption and then aiming to perform an ener-
getically autonomous system.
Chapter 5 targets the problem of designing advanced real-time scheduling algorithms that are
subject to timing, energy consumption and fault-tolerant design constraints. To this end, we first
investigated the problem of developing scheduling techniques for uniprocessor real-time systems
that minimizes energy consumption while still tolerating up to k transient faults to preserve the
system’s reliability. Two scheduling algorithms are proposed: The first algorithm is an extension
of an optimal fault-free low-power scheduling algorithm, named ES-DVFS. The second algorithm
aims to enhance the energy saving by reserving adequate slack time for recovery when faults strike.
We derive a necessary and sufficient condition that can be checked efficiently for the time and energ
feasibility of aperiodic jobs in the presence of faults. Later, we formally prove that the proposed
algorithm is optimal for a k-fault-tolerant model. Our simulation results show that, the proposed
approach can achieve more energy savings over previous works under reliability constraint.

3

Chapter 2

State of Art

This chapter is an introduction to real-time computing systems with different types of con-
straints such as time and energy constraints and fault-tolerant constraints. We first present

the main concepts of real-time systems and introduce the problem of real-time scheduling. Then,
we focus on three points: (i) monoprocessor real-time systems, (ii) real-time fault tolerant systems
and (iii) real time systems subject to energy constraints.

2.1 Real-time Systems

2.1.1 The Concept of Real-Time

The meaning of the concept of real-time is very broad and far from what one can imagine. A
real-time system is not a fast-moving system but a system capable of reacting to external stimuli in
specified times (temporal constraints). We focus therefore on the definition of time as measurable
physical data. An real-time application is therefore a set of activities with associated temporal
constraints. The definition of real time widely adopted in the field is that of Stankovic [2]:

Definition 2.1. The correction of a real-time system does not only depend on the logical result
calculations but also the time at which the results are produced.

In computing systems, we consider the system to be a real-time one when it is able to control
a physical process at a speed adapted to the evolution of the control process. Real-time comput-
ing systems differentiate themselves from other computing systems by taking into account time
constraints whose respect is as important as the accuracy of the delivered results. In other words,
the different possible sequences of treatments of the system guarantee that each one of them does
not exceed their temporal limits.

2.1.2 Specificities of Real-Time Systems

2.1.2.1 Definitions and Major Characteristics

The definition of the widely adopted real-time system is as follows [3]

Definition 2.2. We call a real-time system any system whose functioning is subject to the dynamic
evolution over time of an external process with which it interacts and whose behavior must be
controlled by exploiting limited resources.

5

2.1 Real-time Systems

The behavior of a real-time system has different characteristics. We quote six major charac-
teristics that define it:

− Logical and temporal accuracy: the system must be able to provide outputs that are consis-
tent with the inputs of the system and this in respect of the temporal constraints.

− Predictability: The purpose behind using a real-time system is to ensure that all the tasks
(with all their execution configurations) will meet their deadlines. These must therefore be
expected and executed within the specified time constraints. To guarantee this, we always
use the worst case execution scenario.

− Determinism: real-time system always responds in the same way to an incoming event, that
is, the system produces the same outgoing event.

− Reliability: the system responds to the availabile constraints. Hardware and software compo-
nents in the system must be reliable, that is, they must be able to provide correct processing
of the received as well as the defined information.

− Complexity: Every real-time system has a certain complexity that comes from not only
from the non-determinism of the external environment with which it interacts (events in the
external world often occur asynchronously and appear in an unpredictable order) but also
from the features that it achieves.

− Fault-Tolerant: in order to respect the constraint of reliability, some real-time systems must
be designed to be tolerant to certain faults that may occur or else the system will shut down.

2.1.2.2 Taxonomy of Real-Time Systems

Real-time systems are classified according to the level of criticism of their temporal constraints
[4]. We then speak of systems:

− Hard Real-Time Systems: In such systems, the non respect of the temporal constraint
leads to system faults that can generate catastrophic consequences (in terms of human lives,
impact on the environment, or even on the economy) on the system itself or its environment.
This means that all system processes must necessarily respect all their temporal constraints.
These systems include air traffic control, missile control systems, supervision of nuclear power
plants, etc.

− Soft Real-Time Systems: This constraint is less demanding than the hard constraint which
needs an absolute respect of all the temporal constraints. In such systems, it is acceptable
to miss some of the deadlines occasionally with additional value for the system to finish the
task, even if it is late. The task’s overflow can cause acceptable degradation without serious
consequences to the system. An example of this is the difference between sound and image
in a video projection.

− Firm Real-Time Systems: It is a subclass of soft real time flexible for which the occasional
failure of tasks is authorized. Unlike soft-constrained systems, firm real-time system tolerates
up to an associated deadline misses, but eventually the performance will degrade if too many

6

Chapter 2. State of Art

are missed. Therefore, every firm real-time task is associated with some predefined deadline
before which it is required to produce its results. However, unlike a hard real-time task, even
when a firm real-time task does not complete within its deadline, the system does not fail.
The late results are merely discarded. In other words, the utility of the results computed by
a firm real-time task becomes zero after the deadline. In firm real-time systems, the quality
of such systems is quantified: the measurement of the temporal constraints violations takes
the form of a probabilistic data which one will call Quality of Service (QoS). The QoS is
related to a particular service such as the number of treated bits of the sound system in
your computer. If you miss a few bits, no big deal, but miss too many and you’re going
to eventually degrade the system. Similar would be seismic sensors. If you miss a few
datapoints, no big deal, but you have to catch most of them to make sense of the data.
More importantly, nobody is going to die if they don’t work correctly.

2.1.3 Characterization and Modeling of Real-Time Tasks

2.1.3.1 Definitions

From the processor’s point of view, a task is an activity that consumes resources of the com-
puter machine (memory and CPU time). A real-time application consists of a set of tasks. The
term task refers to the portion of computer code resulting from the compilation of a high level
language that will be executed by the processor. A task can be executed a multitude of times
during the system life time. We can cite as an example a task that regularly raises the tempera-
ture of a sensor. Real-time tasks can be modeled by thinking each periodic task as consisting of
a sequential stream of job or task instance [5]. So, a job is an instance of a real-time task. In a

Running

Task

Suspended

Task

Ready

Task

Preemption

Election

Waiting for event

(Blocking)

Released

Waiting for the

processor

Executing on the

processor

Figure 2.1: Different possible states for a real-time task

multitasking environment, at any time, each task can be in one of the following states:

− Running: This is the case of the task being executed. When there is only one processor,
only one task is running at a given time (this one is chosen according to the considered

7

2.1 Real-time Systems

scheduling policy and the mode of execution: preemptive or not).

− Ready: This is the case of a task waiting for the availability of the processing resources.

− Suspended: This is the case of tasks that are waiting for events that will cause them to be
released.

Figure 2.1 shows the possible transfers from one state to another. A task (supposed already
created) is initially in sleeping state. When it is released, it switches to the ready state where it
is waiting to be selected by the scheduler to run. When the scheduler decides to run it according
to a given scheduling policy, the task will be allocated to the processor and be executed (active
state or running state).
A running task may: (i) be interrupted by another higher priority task and goes into ready state
(ii) be waiting for a message, a date, an event or good access to a resource, (iii) be suspended and
switch to the blocked state. A task in waiting state for a condition (an incoming message, a date,
an event or a release of resource) will be ready to run when the condition will be verified.

Apart from the time periods associated with each task, there are other constraints including:

− Precedence constraints: that define a partial order on the execution of tasks. A task with
no precedence constraint will be qualified as an independent task.

− Execution constraints: that is based on two execution modes: preemptive or non-preemptive.
A preemptible task can be interrupted at any time (by a higher priority task) and can be
resumed later or immediately on another processor. On the contrary, a non-preemptible
task runs from the moment it is elected and retains access to the processor until the end of
its execution.

− Resource constraints: that result in access to critical resources in mutual exclusion for tasks
that want to run.

− Placement constraints: that require a task to run on one or more given processors.

Before defining periodic and aperiodic task models, it is necessary to introduce a more general
model from which these derive. This basic model is the model of jobs (or task instances).

2.1.3.2 Job Model

A job is characterized by three parameters, as specified in the definition below :

Definition 2.3. A job is characterized by the triplet (a, c, d) where:

− a is the release time.

− c is the coputation time.

− d is the absolute deadline.

8

Chapter 2. State of Art

0 a d t
c

Figure 2.2: Model of a job

In other words, a job that arrives at the moment t has required units of execution time that
must be assigned to it in the interval [a, d] to respect its temporal deadline (see Figure 2.2).
A job scheduling policy must be implemented. It is in charge of selecting the different jobs to be
executed on the system processor. Only active jobs can be scheduled, namely:

Definition 2.4. A job is said to be active at time t when:

− The job has arrived at a time before t (a ≤ t)

− Its deadline is after the moment t (t < d),

− The job has not finished its execution (less than c units of time have already been executed).

2.1.3.3 Modeling Real-Time Tasks

As previously stated, the execution of a task gives rise to a set of jobs. There are mainly three
types of tasks, depending on how the jobs are enabled:

− Periodic tasks are activated regularly according to a fixed period;

− Sporadic tasks are irregularly activated but with a minimum duration between the arrival
of two consecutive jobs;

− Aperiodic tasks are activated in an irregular way without any property that can link the
jobs between them.

In this work, we consider the periodic case. The cases of aperiodic and sporadic tasks will not
be implemented.

2.1.3.3.1 Model of Periodic Tasks Periodic real-time tasks represent tasks whose jobs are
recurring with an interval of constant recurrence called period. Several models of periodic tasks
have been described and studied in the literature. The simplest and most studied is the one
commonly known as Liu and Layland’s model [6]. This model consists in characterizing a task
by two parameters: C its maximum execution time also called the worst case execution time
(WCET), and T its period. Other models are proposed in which we just add parameters to
this basic model. A model of periodic tasks a little more sophisticated than the previous one is
proposed by [7].
A periodic task τi(ri, Ci, Di, Ti) is defined by:

− ri, the release time of the first job of the task τi. In our work, we consider that all tasks are
released at time t = 0.

9

2.2 Formulation of the Real-Time Scheduling Problem

− Ci, the worst case execution time (WCET) of each job of the task τi.

− Ti, the period of the task τi or the duration that separates the arrival of two successive jobs
of τi.

− Di, the relative deadlineof the task τi also called critical time.

In this characterization, task τi makes its initial release at time ri and its subsequent requests
at times ri + kTi; k = 1, 2, · · · called release times. The least common multiple of T1, T2, · · · , Tn
(called the hyperperiod) is denoted by TLCM . Each request of τi requires a worst case execution
time of Ci time units. A deadline for τi occurs Di units after each request by which task τi must
have completed its execution. It is always assumed that 0 < Ci ≤ Di ≤ Ti for each 1 ≤ i ≤ n.
The processor utilization factor or processor load Upi of the task τi corresponds to the activity
rate of the processor following the execution of the successive jobs of the task: Upi = Ci

Ti
;

The set of parameters is illustrated in figure 2.3:

0 4 5 9 10 14 15 19 20

8 10 18 20

16 20

t

t

t

0

0

 Ʈ1

 Ʈ2

 Ʈ3

Figure 2.3: Model of a periodic task

2.1.3.3.2 Model of Aperiodic Tasks An aperiodic task (or non-periodic task) demands
running once. It is produced during a non-recurring event, for example an alarm triggered. As
a result, the release time of an aperiodic task is not known beforehand. Aperiodic tasks can be
critical or non-critical. A non-critical aperiodic task is not temporally constrained, this means
with no deadline and whose execution must be carried out as soon as possible. On the contrary,
critical tasks is provided by a deadline and must be completely executed before that deadline.
Critical aperiodic tasks are denoted as follows: A task set Γ = {τi | i = 1, · · · , n}. A four-tuple
(ri, ri, Ci, Di) is associated with each task τi. Where ri is the arrival or release time of the task,
i.e. the time where τi is known by the system. In addition, each request of τi requires a worst case
execution time of Ci time units. A deadline for τi occurs Di units after each request by which task
τi must have completed its execution. It is always assumed that ri +Ci ≤ Di for each 1 ≤ i ≤ n.
Figure 2.4 illustrates the model of critical aperiodic task:

2.2 Formulation of the Real-Time Scheduling Problem

A real-time multitasking operating system allows the execution of several programs at once.
When several tasks require to run simultaneously on the same processor, several problems arise

10

Chapter 2. State of Art

ri

Di

Ci

ri + Di0

Figure 2.4: Model of an aperiodic task

including access to the processor, concurrent access to memory, access to the peripherals, etc.
Consequently, we must choose, at every moment, the most appropriate task to run on the pro-
cessor. To allow this choice, it is necessary to provide a scheduler (for the implementation of
a scheduling algorithm) allowing the proper functioning of the system, i.e. the respect of the
deadlines of the tasks. The scheduler is then the main component of an operating system that
chooses the order of execution of the tasks on the processor.

2.2.1 Categories of Real-Time Scheduling

In general, schedulers are classified according to characteristics of the system on which they
are located. Some types of schedulers are indicated below:

− Uniprocessor or Multiprocessor: Scheduling is performed on a single-processor if all tasks
can only run on one and same processor. If multiple processors are available in the system,
the scheduling is of type multiprocessor.

− Offline or online: The scheduling algorithms can be classified into two categories, namely
offline and online scheduling algorithms: Offline scheduling is established prior to launch-
ing the application to determine a fixed sequence of task execution from all the different
characteristics and constraints. Then this sequence is stored in a table and executed online
by the processor. An online scheduler constitutes of building a dynamic sequence based on
the events that occur. However, it relies on data collected by a preliminary analysis of the
system carried out off-line to ensure compliance with the time constraints of the tasks.

− Driven by priority: A large majority of online scheduling algorithms arrange ready tasks by
associating them with a value called priority. This is called algorithms driven by priority.
Higher is the priority of a task at a given time, shorter will be its processor standby time.
We distinguish between schedulers with fixed priorities of those with dynamic priorities
according to whether this priority is constant or variable over time.

− Preemptive or non-preemptive: A scheduler is preemptive if the execution of any task can be
interrupted to execute another task that is deemed to have higher priority. On the contrary,
if once the task started in progress execution, it can not be interrupted before the end
of its execution despite the release of a higher priority task, this scheduling is said to be
non-preemptive.

11

2.2 Formulation of the Real-Time Scheduling Problem

− Idle or non-idle: A non-idling scheduler works without insertion of slack time (non-idling
or work-conservative). Therefore, in the case of a non-idling scheduler, if there is at least
one task ready and the processor is free, then the scheduler elects the highest priority task
and executes it immediately. The idle scheduler works by inserting idle times. Even if the
processor is free, there may be a task that waits for a while before being executed based on
decision of the scheduler. We will show in the following of this work that the idleness of a
scheduler is a necessary property to obtain the best quality of service in a context of energy
constraines.

− Centralized or distributed: Coulouris [8] proposes the following definition: "A distributed
system is a set of autonomous machines connected by a network, and equipped with software
dedicated to the coordination of the system activities as well as sharing its resources". On
the other side, a system is centralized when the scheduling algorithm for the whole system,
distributed or not, is produced on a privileged site of the distributed architecture which
contains all the parameters of the tasks.

This thesis focuses on centralized systems restricted to a single processor architecture where
preemption is allowed.

2.2.2 Properties of Scheduling Algorithms

The choice of a scheduling algorithm essentially depends on the context defined by the dif-
ferent characteristics of the real-time system on which it is implemented. We quote in this part,
some properties and definitions used in the scheduling and feasibility analysis of any real-time
application [4].

Definition 2.5. A scheduling algorithm of a task configuration is valid if and only if all deadlines
of tasks are respected.

Definition 2.6. A task configuration is said to be feasible if there is at least one scheduling
algorithm in which all tasks respect their deadline.

Definition 2.7. A task configuration is said to be schedulable if and only if there exists a valid
scheduling algorithm for an infinite length.

Definition 2.8. The scheduling algorithm ω is optimal in a class of a given scheduling problem,
if it can successfully schedule a set of tasks whenever this set is schedulable.

In other words, if an optimal scheduler fails to build a valid sequence for a given task config-
uration, then no other scheduler will be able to find a valid sequence for the same configuration.
An schedulability test makes it possible to determine, before execution, whether a given scheduler
will be able to provide a valid scheduling sequence for a given task configuration.
Designing an application of hard real-time type therefore requires that before it starts, that the
application is achievable. This is done in the development phase by executing a schedulability
test after selecting the scheduler that will be implemented in the operating system.

12

Chapter 2. State of Art

Definition 2.9. A scheduling algorithm is said to be clairvoyant when it knows all the features
of the tasks to be executed and whose release has not yet taken place. Otherwise, it is said to be
non-clairvoyant.

Definition 2.10. An algorithm is said to be deterministic if it does not involve any random
component in the scheduling decisions. Therefore, a periodic task configuration scheduled several
imes by the same deterministic algorithm will present the same task scheduling.

Definition 2.11. Consider a configuration of n periodic tasks. The sequence of scheduling for
this task configuration, produced by any preemptive scheduling algorithm is always periodic and of
period equal to H. H, called hyperperiod, represents the smallest common multiple of periods of
the configuration tasks [9].

2.3 Scheduling of Periodic Tasks

Depending on the specificities of the application, the designer must define a scheduling method
in order to respect the temporal constraints of the tasks. In this section, we detail the main classical
algorithms for the scheduling of periodic tasks. The algorithms presented are based on the worst
case consideration, that is, they evaluate the schedulability of a periodic tasks configuration to a
critical instant. The Critical Time of a Task [6] is the time when the request to execute this task
arrives simultaneously with the request to execute all higher priority tasks. Therefore, this time
corresponds to the longest response time of the scheduler following the execution request of all
the tasks.

2.3.1 Scheduling with Fixed Priorities

2.3.1.1 Rate Monotonic Algorithm

The Rate Monotonic (RM) algorithm was introduced by Liu and Layland to schedule a task
configuration to implicit deadlines [6]. According to RM, a task has a fixed priority that is in-
versely proportional to its period. Therefore, RM always gives priority to the job belonging to
the smaller task activation period.

RM is optimal in the class of preemptive algorithms with fixed priorities for the scheduling of
periodic, independent and synchronous tasks [6]. If any of these conditions is not satisfied, then
RM is no longer optimal.

A sufficient condition of schedulability has been proposed by Liu and Layland [6]. Let Up =∑n
i=1

Ci
Ti

be the processor utilization factor of a task set Γ of n periodic tasks with deadlines equal
to periods. Γ is schedulable by the RM algorithm if Up verifies the following condition:

Up ≤ n(21/n − 1) (2.1)

When analyzing this result, we find that for a large number of tasks, the upper limit of the
processor utilization that guarantees a feasible scheduling with RM is about ln(2) ≈ 0.69. On the

13

2.3 Scheduling of Periodic Tasks

other hand, if tasks are harmonic (all periods are multiple or sub-multiples of others), this limit
tends to to 1. Moreover in his experimental study on tasks with periods and random execution
costs, Lehoczky et al. [10] show that the RM algorithm is able to schedule configurations of tasks
with a CPU utilization limit of around 0.88.

2.3.1.2 Deadline Monotonic Algorithm

The Deadline Monotonic (DM) algorithm was introduced by Leung and Whitehead [11]. DM
ranks tasks in ascending order of relative deadlines. DM and RM are some how confused. In
DM, the task τi with arelative deadline Di has higher priority than another task τj with arelative
deadline Dj if Di < Dj . DM is better than RM for periodic tasks whose deadlines are smaller
than their periods.

The DM algorithm is optimal in the class of preemptive algorithms, with fixed priorities for
scheduling periodic, independent, synchronous and time-bound tasks.

2.3.2 Scheduling with Dynamic Priorities

2.3.2.1 Earliest Deadline First Algorithm

Earliest Deadline First (EDF) is a fixed priority job scheduler with dynamic priorities at the
task level. It was presented by Jackson [12]. With the EDF algorithm, the highest priority task
at time t is given to the task whose deadline is closest to that time. EDF is mainly used with
preemptions: if a very urgent job is released, the job is pre-empted in favor of more urgent. How-
ever, EDF can also be used without preemption; This version will not be discussed in this thesis
knowing the poor performance of non-preemptive schedulers.

Illustration:
Consider a periodic task set Γ = {τi(Ci, Di, Ti) | 1 ≤ i ≤ 3}. τ1(2, 4, 5), τ2(2, 8, 10) and
τ3(4, 16, 20). Tasks are synchronous and released at time t = 0. The scheduling of the task set Γ

according to EDF is illustrated by Figure 2.5:

0 4 5 9 10 14 15 19 20

8 10 18 20

16 20

t

t

t

0

0

 Ʈ1

 Ʈ2

 Ʈ3

Figure 2.5: Scheduling by EDF

EDF is optimal for independent task configurations with deadline constraints (Di ≤ Ti) [13].

14

Chapter 2. State of Art

An EDF schedulability test for periodic or sporadic tasks with implicit deadlines is given by
the following theorem:

Theorem 2.1. A configuration of n synchronous periodic tasks with deadlines equal to periods is
schedulable with EDF if and only if its processor utilization factor Up verifies

Up =
n∑
i=1

Ci
Ti
≤ 1 (2.2)

EDF is certainly the most popular algorithm. Indeed, EDF has a very strong performance that
achieves a CPU utilization factor of 100% under the condition In Theorem 2.1. Moreover this
result is also valid for task sets of delayed arrive times, which illustrates the superiority of EDF
over RM and DM.
For synchronous periodic tasks with deadline constraints, we will use another test which is proved
to be necessary and sufficient. This test incorporates a new criterion, the processor demand h(t)

proposed by Baruah et al. in [14].

Theorem 2.2. A set of n periodic tasks is schedulable by EDF if and only if:

∀ t > 0 h(t) = max

(
0,

n∑
i=1

(
1 + b t−Di

Ti
c
)
Ci

)
≤ t (2.3)

2.4 Conclusion

The purpose of this chapter was to present some basic notions necessary for understanding
the context of this thesis. At first, we recalled the general characteristics of real-time systems.
Then we described the terminology and concepts related to real time domain and more specifically
concerning scheduling. In a second step, we presented the main scheduling algorithms which make
it possible to schedule periodic tasks.
In the next chapter, we will introduce real-time systems called autonomous because powered
by renewable energy. And we will present the scheduling algorithms specially adapted to the
configurations of periodic tasks in these systems.

15

Chapter 3

Real-Time Scheduling Under Energy Constraints

In this chapter, we are interested in the problem of scheduling tasks characterized not only by an
execution duration constrained by time but also by needs in energy to realize this execution.

First, we describe the embedded systems and more precisely the wireless sensor networks. At
present, these constitute the majority of embedded applications built around autonomous systems
from the energy point of view. Then, we focus on the storage and extraction of renewable energy
to power these autonomous systems. We describe a state of the art about technologies associated
with energy recovery. After that, we describe the problem of energy autonomy in a system often
described as energetically neutral. Finally, we describe different scheduling techniques with the
aim of minimizing energy consumption and then aiming to perform an energetically autonomous
system.

3.1 Embedded Systems

3.1.1 Definition

Wayne Wolf [15] defines an embedded system as any programmable device, without being a
computer, even though computers are very often used to build embedded computer systems.
An embedded system is an autonomous electronic / computer system. Autonomous means that it
is not attached to the power grid. It is usually composed one or more microprocessors for executing
a set of programs that are defined previously during its design and are stored in memory. An
embedded system is characterized by its very strong connection with the environment in which it
is installed and with which it interacts. This interaction is described as follows:

− The input information of the embedded system comes from sensors.

− The embedded system performs calculations whose results are sent to actuators or output
devices such as display screens.

Whatever its nature and complexity, an embedded application integrates a control system and
a controlled system. The controlled system is the process or environment that interacts with the
control system. The control system is the set of software and hardware elements (microprocessors
...) where the software has a specific delivery function to the application.

17

3.1 Embedded Systems

3.1.2 Wireless Sensor Network (WSN)

Wireless sensor networks (WSNs) is a research theme in full expansion. They are ubiquitous
in many areas, especially intrusion detection, environmental monitoring, medical monitoring, etc.
A WSN is made up of nodes that communicate with each other and with a base station. A
sensor node is a significant example ofreal-time embedded system, which receives data from its
environment via one or more sensors attached to it.

Energy

Source

Energy

Harvester

Energy

Reservoir

Energy

Management
Sensor

Microprocessor Transmitter / Receiver

Ps(t)

Pr(t)

Desired

Measure

Figure 3.1: Example of a self-contained wireless sensor system

Figure 3.1 shows a diagram of a wireless sensor network system. A WSN system is constituted
of three main elements: the energy receptor, the energy reservoir and the microprocessor. The
energy receptor (for example a photovoltaic cell) has the role of extracting the energy delivered
by a source (for example the sun) and then convert it into electrical energy. This electrical energy
will recharge an energy reservoir that can be a battery or a super-capacitor and is characterized
by its capacity, noted C. We assume that it is ideal in the sense that it can always be charged to
its maximum capacity. At any instant t, the energy stored in the reservoir is denoted E(t) and
its value is bounded by two constants such as 0 ≤ E(t) ≤ C.
The energy received by the energy reservoir during an interval [t1, t2] is denoted Es(t1, t2) and is
calculated as follows:

Es(t1, t2) =

∫ t2

t1

Ps(t)dt (3.1)

Where Ps(t) is the instantaneous power received at instant t including all the energy losses
caused by the hardware implementation of the energy recovery process.

The supply of a sensor node (simply called sensor) is a crucial point. Its choice depends not
only on the material characteristics of the sensor but also on the different treatments it will have
to perform. Most WSNs are used in hostile areas where humans can not easily access them
(satellite in space, nuclear environments, etc.). Therefore, recharging or replacing a battery is
proved to be difficult and extremely expensive for most applications if not impossible. Hence, the
importance of estimating the energy needed to allow a high system performance and ensure its
autonomy over a very long period without external intervention.
Thus, we will be able to be satisfied from six months to one year as duration of autonomy for

18

Chapter 3. Real-Time Scheduling Under Energy Constraints

certain classes of systems such as non-intrusive medical sensors. However, such a period will
be considered insufficient for others because of the costs and risks associated with replacing the
batteries. This is the reason for which in recent years, we are moving towards a process that
consists in never changing the battery knowing that it can be recharged continuously from the
environment.
The harvesting of ambient energy is more and more widespread in WSNs where the environment
offers multiple sources of energy. This technique involves associating with an energy consumer
system, a reservoir of energy for ensuring the temporary storage of energy harvested by the envi-
ronment.
The introduction of such technology leads us to describe an embedded system in the form of three
components: energy harvester (energy receptor), energy reservoir for storing energy (battery and
/ or super-capacitor) and energy consumer (the computer system).
One of the most important key issues when designing an embedded system is the dimension of its
components. We are concerned here in the minimum size of the battery that will allow a perpetual
operation of the system taking into account the consumed energy and the energy produced by the
environmental source.

3.2 Energy Storage

3.2.1 Energy Storage Elements

The harvested energy is stored in a reservoir which can be a battery and / or a supercapacitor.

3.2.1.1 Battery

A battery is an electrochemical device that converts chemical energy into energy thanks to a
chemical reaction of oxidation-reduction. The electrical energy provided by these electrochemical
reactions is expressed in watts (Wh). Batteries are the most widely used energy storage technology
for all electronic devices. This is due to the generation of energy-hungry portable devices like
digital cameras, camera phones, PDAs, etc. There are 2 types of relatively long lasting batteries:
Primary (non rechargeable) batteries compared to secondary (rechargeable) batteries. However,
a large-scale adoption would result in important environmental issues. Rechargeable batteries
require that the user can access to the electrical grid to recharge them which is not always available
even in urban areas.
A battery is characterized by:

− Its voltage, expressed in volts (V), which represents the potential of oxidation-reduction
between the two electrodes of battery.

− Its electric charge in ampere-hour (Ah), which corresponds to the amount of electrons that
the battery can hold.

− Its electrical charging capacity which represents the maximum charge provided by the bat-
tery, corresponding to a complete discharge cycle (between the moment when it is loaded to
its full capacity and the moment it is completely discharged).

19

3.2 Energy Storage

− Its cyclability, expressed in number of cycles, which characterizes the life of the battery, this
means the number of times where it can restore a level of energy higher than 80% of its
nominal energy.

− Its mass (or volume) energy density, expressed in watts per kilogram, (Wh/kg) (or in watts
hour per liter, Wh/L), which defines the battery life and represents the amount of energy
stored per unit mass (or volume) of the battery.

− Itsmass power density, in watts per kilogram (W/kg), represents the power (electrical energy
supplied per unit time) that the battery can deliver.

The use of rechargeable batteries instead of conventional batteries, will thus make it possible to
lengthen the life of the embedded systems in which they are integrated. When a classic battery
is exhausted, the system is no longer functional and it is said that the sensor is dead [16].
To extend its life time, we would then have to increase the capacity of the conventional battery..
On the contrary, in the case of a rechargeable battery, it is recharged by a natural and inexhaustible
energy source such as that provided by a photovoltaic panel. So the application will only use the
available energy in the battery when the system is overloaded (i.e. the consumed power of the
system is greater than the power transmitted by the source). Therefore the surplus of photovoltaic
energy produced during the day will be used to power the system during the night when no energy
can be drained from the environment.

3.2.1.2 Supercapacitor

Supercapacitors turn out to be competitive energy reservoirs compared to batteries in the world
of small autonomous objects. A super-capacitor is an electrochemical capacitor that has an
exceptional energy storage capacity compared to traditional capacitors.
Compared to a rechargeable battery, supercapacitors are characterized by

− Very high power during the charging / discharging cycle.

− Significant cyclability (thousands of charging / discharging cycles)

− A tolerance at low temperatures of up to -40 ◦C knowing that batteries do not work properly
with a temperature below -10 ◦C.

− The speed of their recharging. A battery may be damaged due to a too fast charge.

Advantages of supercapacitors are: unlimited cycle life (not subject to the wear and aging expe-
rienced by the electrochemical battery), low impedance (enhances pulse current handling by par-
alleling with an electrochemical battery), rapid charging (low impedance supercapacitors charge
in seconds), simple charge methods (voltage-limiting circuit compensates for self-discharge; no
fullcharge detection circuit needed) and cost-effective energy storage (lower energy density is com-
pensated by a very high cycle count).
On the other side, supercapacitors are unable to deliver the full energy stored since the voltage
discharge curve is not at. Other drawbacks are: (i) Supercapacitor cells have low voltages and (ii)
They have low energy density and high self-discharge.

20

Chapter 3. Real-Time Scheduling Under Energy Constraints

3.3 Problem of Autonomy of Embedded Systems

In this paragraph, we introduce a new terminology.

3.3.1 Need for New Terminology

3.3.1.1 Scheduling with energy clairvoyance:

A scheduler is energetically clairvoyant when a priori knowledge of the amount of energy is
produced by the source that feeds the system. In the contrary, the scheduler is said not clairvoyant
from the energy point of view.

3.3.1.2 Scheduling with time clairvoyance:

A scheduler is temporally clairvoyant when it knows a priori all the characteristics of the future
tasks to be performed.

3.3.1.3 Total clairvoyant scheduling:

A scheduler is totally clairvoyant if it has both a time clairvoyance and energy clairvoyance.

3.3.1.4 Temporally feasible scheduling:

We say that scheduling is temporally feasible for a given task set Γ if there is at least one
scheduler capable of producing a temporally valid sequence to satisfy all the timing constraints
without taking into account its energy constraints.

3.3.1.5 Schedulable task configuration:

A task configuration is schedulable if it exists at least a scheduler able to create a scheduling
sequence that satisfies all the temporal and energy constraints. On the contrary, it is said to be
non-schedulable when it fails to respect either its temporal constraints or its energy constraints.

3.3.2 Need for a Task Model Adapted to Energy Constraints

Consider a real-time periodic task set Γ. Every task τi is characterized by (Ci, Di, Ti, Ei), where
Ci is the worst case execution time (WCET), Di is the relative deadline, Ti is the period and Ei
is the worst case energy consumption (WCEC). Periodic tasks are assumed to be preemptible,
independent and initially synchronized (all tasks are released at time t = 0).

3.3.3 Need for Specific Scheduling Policies

Consider a task set Γ consisting of three independent periodic and preemptable tasks. Γ =

τi(Ci, Di, Ti, Ei). τ1(2, 4, 5, 5), τ2(2, 8, 10, 10) and τ3(4, 16, 20, 10). Tasks are synchronous and
released at time t = 0. Γ is scheduled according to EDF on a processor powered by a battery
with nominal capacity C = 10. This battery is recharged by an environmental source. It receives
constant power Ps(t) = Ps = 2. Figure 3.2 illustrates the scheduling of this configuration according
to EDF. We notice that at time t = 5, the energy in the battery is exhausted. Ready tasks are

21

3.4 Existing Scheduling Policies

0 4 5 9 10 14 15 19 20

8 10 18 20

16 20

t

t

t

0

0

 Ʈ1

 Ʈ2

 Ʈ3

542

t

E(t)

Figure 3.2: Scheduling by EDF under energy constraints

then interrupted by missing energy. It is therefore necessary to provide a time for recharging
the battery and then being able to continue the execution of the tasks. However, this time lost
during recharging of the battery must be calculated very carefully to prevent the violation of the
deadlines of the tasks and the collapse of the system. In summary, EDF is not an energetically
clairvoyant algorithm and is not adapted to this type of real-time system.
The energy constraint adds a new dimension to scheduling problems. We must find an algorithm
capable of performing all tasks in the required time and without running out of energy. Thus, in
the framework of this thesis, we must consider two constraints together: the temporal constraint
and the energy constraint. Tasks can be performed if there is enough energy in the reservoir that
is recharged by a source of energy knowing that it is necessary to guarantee their executions while
still respecting their temporal constraints. New types of schedulers are proposed in the literature
for Monoprocessor real-time systems subject to time and energy constraints. These scheduling
techniques must create a valid sequence of the task configuration that constitutes the application.
When the scheduling sequence is valid, the it is valid from both time and energy point of view.
We will first explore various existing techniques aimed at to schedule a task configuration while
satisfying their temporal and energy constraints.

3.4 Existing Scheduling Policies

3.4.1 Approaches to Minimize Energy Consumption

To reduce the energy consumption of an embedded system, two types of methods exist.

22

Chapter 3. Real-Time Scheduling Under Energy Constraints

3.4.1.1 Dynamic Power Management (DPM)

DPM can dynamically manage the activity of the system by making switches from a sleep
state to an active state and vice versa [19]. DPM method can reduce power consumption of the
system without significantly degrading the performance by switching to standby mode when there
is no running task and then switch to the active mode when the processor is requested. These
methods use processors that have a sleep function. Therefore, the processor is temporarily turned
off when necessary. DPM method will consume a little or no energy (called static energy) in this
sleep state. For example, the Intel 80200 processor has three modes of operation, including two
energy-efficient modes that differ in the number of components.

3.4.1.2 Dynamic Voltage and Frequency Scaling (DVFS)

The method known as Dynamic Voltage and Frequency Scaling (DVFS) allows the processor to
change the frequency when necessary. DVFS method uses processors designed to reduce the used
energy by varying the supply voltage and therefore the frequency of operation [19]. Thus, if the
processor frequency is reduced, the job in execution will increase its execution time. For example,
if the frequency is halved, the job will take twice as long to complete its execution. Since energy
consumption is a quadratic function of frequency, the fact of reducing it significantly impacts
energy consumption. In this context, saving energy is achieved by stretching the execution times,
which must be controlled so that we continue to respect the temporal constraints. Therefore,
using this category of processors, there will be possibility to slow down the frequency of operation
and thus slow down the current task so as to reduce its energy consumption while satisfying its
temporal constraints.
Authors have been interested in reducing the energy consumption of the system. Techniques
for the reduction of energy consumption using the DPM method are studied by Benini and al.
in [20]. In addition, using the DVFS technique, Yao et al. [21] proposed an algorithm that
calculates the optimum energy operating frequencies for a set of periodic tasks. The underlying
scheduling policy being EDF, this strategy is also optimal from a scheduling point of view. Then,
Aydin et al. [22] proposed an approach based on DVFS technique and the necessary and sufficient
condition proposed in [6]. They assume that power received by the source is constant. Their
algorithm minimizes the energy consumption of periodic tasks by guaranteeing their execution
before their deadline. Techniques have also been developed for periodic and aperiodic tasks to
reduce the energy consumption of the system [23], [24] .

3.4.2 Approach to Energy Autonomy

In this part we quote some existing algorithms in the literature that make it possible to
schedule a set of periodic tasks on a constant speed processor so as to make good use of the energy
available in the system while satisfying their temporal and energy constraints. The methods that
we describe here are therefore adapted to the model described previously.

23

3.4 Existing Scheduling Policies

3.4.2.1 Optimal LSA Scheduling Algorithm

The Lazy Scheduling Algorithm (LSA) [25] is an on-line scheduling algorithm. It allows to
schedule any set of periodic or aperiodic critical tasks according to EDF. These tasks are performed
by a monoprocessor powered by a energy reservoir that is fed by a renewable energy source. This
energy reservoir receives a instantaneous power Ps(t) that can vary over time.
Each time a task is released, the scheduler calculates a start date specific to this task. This time
represents the moment from which the task can begin to run on the processor using the maximum
power consumption Pmax during its execution. Between the arrival time and the start time, the
processor is intentionally left in standby to allow the reservoir to recharge. This recharge time
interval is calculated by ensuring that the processor has sufficient energy to complete the task
in accordance with its deadline. LSA is a clear-sighted point algorithm energy perspective; so it
assumes to have a knowledge, at least for a near future, of the quantity of the harvested energy.
However, as it does not require to know a priori the time of future arrival of tasks. LSA is not
clairvoyant from a temporal point of view.
Consider a single-processor architecture characterized by power consumption Pmax, in charge of
executing a task set. A task τi(ri, Ci, Di, Ti, Ei) is characterized by its execution time Ci, its
deadline Di and its energy demand Ei. If LSA can not reliably schedule this task set, then no
other algorithm can do it, even if it is totally energetically clairvoyant.
Even if LSA is optimal, it has some disadvantages. Indeed, the assumptions made about the
configuration of tasks are very restrictive. The energy consumed by a task is assumed to be
proportional to its execution time (Ei = k.Ci). However, the total energy that a task consumes
during its execution is not proportional to the duration of its execution. This energy depends in
particular on the different electronic circuits which the task needs during its execution.

3.4.2.2 EDeg Scheduling Algorithm

3.4.2.2.1 Principle of EDeg: The algorithm EDeg (Earliest Deadline with Energy Guaran-
tee) [26] is a variant of the EDF and the EDL scheduling algorithms for scheduling periodi. We
consider a system composed of a single processor that is powered by a reservoir of energy. This
energy reservoir is recharged by a renewable energy source. The processor must be able to per-
form a strict real-time periodic task configuration while considering their energy demands, their
deadlines and the energy available in the reservoir.
Thus, at every moment, the task with the closest deadline among the ready tasks is executed only
if the reservoir is not empty and there is enough energy in the system so that the execution of
the task compromises the execution of future periodic tasks. When there is not enough energy in
the system or the reservoir is empty, the processor must be in idle mode (or standby mode) for a
period of time (tidle) to recharge the battery. tidle is calculated by using the EDL algorithm.

Feasibility Test: Consider a configuration of n strict real-time periodic tasks where each task
τi is characterized by its worst-case execution time Ci, its relative deadline Di, its period Ti and its
energy demand Ei. The energy reservoir has a capacity C and the instantaneous power received
by the reservoir is given by Ps(t) which takes into account all the losses due to the conversion.

24

Chapter 3. Real-Time Scheduling Under Energy Constraints

Theorem 3.3. A task set Γ of n periodic real-time tasks is schedulable with EDeg only if :

Up =
n∑
i=1

Ci
Ti
≤ 1 (3.2)

and

Ue =

n∑
i=1

Ei
Ti
≤ Ps (3.3)

Up is the processor utilization factor, Ue is defined in [26] as the energy utilization and Ps is
the average of the power received over the lifetime of the application.

3.4.2.2.2 Description of the Algorithm: Before stating the algorithm of EDeg, let us define
the following notations:

− SlackEnergy(t) is called the energy laxity (slack energy) of the system calculated at the
current time t. This variable represents the maximum amount of energy that can be con-
sumed from time t while satisfying all the temporal constraints of the tasks. If a task τi
is ready and elected at a time t, if the battery is non-empty and if the energetic laxity of
the system is positive, the task can be executed. The energy laxity of the system at time t
corresponds to the minimum energy laxity among those tasks with their release time greater
than the time t and their deadlines less than d (i.e. the absolute deadline of the highest
priority task according to EDF).
The energy laxity of the kth job of the task τi (τi,k) at time t is calculated as follows:

SlackEnergy(τi,k, t) = E(t) +

∫ d

t
Ps(x)dx−Ai,k (3.4)

Where Ai,k is the sum of the energy demands required by the jobs released after ri,k and
deadline less than or equal to di,k such that

Ai,k =
∑

rj≥t,dj≤t
Ej (3.5)

− SlackT ime(t) is the time laxity (slack time) that is the maximum idle time available from
the time t. It is calculated with the EDL algorithm which allows to delay at the latest
periodic jobs while guaranteeing the respect of their deadlines.

− PENDING is a Boolean variable that is true when there is at least one task ready in the
ready queue or false otherwise.

The EDeg algorithm is stated as follows (1):

3.4.2.2.3 Performance of the EDeg Scheduler: The EDeg scheduler has been the subject
of a comprehensive performance study published in [26] and [27]. This study made it possible
to highlight the superiority EDeg on the conventional EDF scheduler. Notably, it is shown that
the EDeg heuristic allows scheduling a hard real-time task configuration given a renewable energy

25

3.5 Energy Saving-Dynamic Voltage and Frequency (ES-DVFS) Algorithm

1: procedure Earliest Deadline with Energy Guarantee (EDeg) Algorithm
2: while (1) do
3: while PENDING=true do
4: while (E(t) > Emin and SlackEnergy(t) > 0) do
5: execute()

6: while (E(t) < Emax and SlackT ime(t) > 0) do
7: wait()

8: while PENDING=false do
9: wait()

Algorithm 1: Earliest Deadline with Energy Guarantee (EDeg) Algorithm

source with variable energy production and with a limited capacity energy storage unit. Through
simulations in [26], EDeg shows real performances compared to EDF variants in terms of the
number of configurable task sets according to the size of the battery, the rate of wasted energy,
the energy consumption profile and the average idle time of the processor. EDeg allows a reduction
of the capacity of the battery from 1.84 to 3 times from that required with EDF according to the
system that is weakly, moderately, or heavily loaded.

3.5 Energy Saving-Dynamic Voltage and Frequency (ES-DVFS)
Algorithm

The goal from the ES-DVFS [83] is to schedule aperiodic jobs as soon as possible according to
earliest deadline first (EDF) in the presence of variability in dynamic execution behavior. We use
a modified EDF strategy to reduce the CPU energy consumption by using the dynamic voltage
and frequency selection. ES-DVFS uses an on-line speed reduction mechanism to minimize the
system-wide energy consumption by adapting to the actual workload. ES-DVFS still guarantees
that all deadlines are met.

3.5.1 Computing the Minimum Constant Speed for Each Job

The ES-DVFS scheduler maintains a priority job queue in which jobs are ordered by the EDF
basis. In the beginning, the job queue is empty. Scheduling decisions are only applied when any
of the following events really arrive: 1) Event 1: a new aperiodic job is ready and is added to the
job queue. 2) Event 2: the current job completes its execution.

We use a dynamic-priority assignment approach where jobs are executed by a variable speed
processor. Hence, the worst case execution time (WCET) of each job varies depending on the
processor slowdown factor under different speed levels. The challenge is how to essentially build
an optimal speed schedule which leads to the maximum energy saving. Our technique is based
on the assumption that the parameters of each job are only known when it is released. ES-DVFS
attempts to allocate the maximum possible amount of slack time based on jobs presented in the
ready job list. When Event 1 occurs, the ES-DVFS updates the optimal speed schedule of the
processor for all the jobs including the new one in the job queue and consequently the slack time
is updated. Further, when an Event 2 occurs, the completed job is removed from the job queue

26

Chapter 3. Real-Time Scheduling Under Energy Constraints

and we execute the job with the highest priority following a new calculated slowdown factor.
When preemption occurs, we implicitly calculate the new processor speed to the favor of the

newly dispatched job. It is formally proved that the jobs will still meet their deadlines if the speed
is changed according to the jobs found in the job queue. This is due to the fact that we keep
track of the remaining execution times of the preempted job in the queue, and consequently the
worst-case workload is still the same.

In aperiodic real-time system, we are not able to reveal how jobs actually arrive. Thus, we
cannot know the maximum deadline or the worst case execution time of the jobs before beginning
the schedule. Instead, we would like to apply on-line DVS scheduling algorithm to make scheduling
decisions only when jobs really arrive, i.e., only for jobs in the job queue.

Based on ES-DVFS, scheduling decisions at time t are as follows: ES-DVFS selects the job
with the earliest deadline Ji and then adopt the speed such that the job has to be finished exactly
at the release time of the next job. This means that Ji is executed at speed Si = Ci/di − t where
a job Ji is associated with worst-case execution time (at Smax) Ci and absolute deadline di.

However, if we do not consider the maximum intensity of all the ready jobs, it is possible
that the required execution speed, at some moment t, of the resulting schedule might miss future
deadlines. Therefore, in order to guarantee that we still meet all the jobs deadlines in the ready
queue Q, the workload hk and the intensity Ij must be verified in advance by considering the
highest speed between hk and Ij .

The intensity at time t is calculated thanks to the following equation:

Ij = max
JjεQ

(

∑
di ≤ djCi
dj − t

) (3.6)

In other words, Ji is executed at speed S = max(Ij , hk). Where hk is the workload of jobs in
the ready queue Q. This means

hk =
∑
JiεQ

Ci
dmax

(3.7)

where dmax is the maximum deadline in Q.
The ES-DVFS algorithm provides sound dynamic speed reduction mechanisms. We integrate

DVFS techniques with EDF scheduler for aperiodic real-time applications that potentially use
uniprocessor devices during execution. ES-DVFS provides an exact energy management technique
as function of the CPU frequency in such a way that time constraints are still met. Using this
framework, the speed of the jobs ready to be executed is dynamically adjusted on the fly.

As mentioned above, when a job arrives, it is added to so called job ready queue Q. At any
time t, there is a single job Ji eligible for execution. Thus, before executing this job, we should use
the minimum CPU speed available to stretch out the WCET as much as possible without violating
deadlines. Therefore, job Ji must be executed with a speed S equal to the total workload hk in
Q.

Note that stretching out a job Ji at a time t with speed hk may lead to deadline violations.
In this case, using the speed S = max(Ij , hk) will result in a total effective workload which is
equal to 1. Hence, ES-DVFS can achieve up to 100 percent CPU utilization where all the jobs
are completed before their deadlines.

27

3.6 Conclusion

3.6 Conclusion

In this chapter, we first stated the main principles of embedded systems with an attention
on wireless sensor networks. We then recalled the principle of the EDeg algorithm that allows
the scheduling of a configuration of periodic tasks without losses subject to time and energy
constraints. Later, we introduced an optimal energy efficient scheduling algorithm, named ES-
DVFS, to reduce the CPU energy consumption. Unlike prior studies, ES-DVFS algorithm provides
sound dynamic speed reduction mechanisms. In the next chapter, we will depend on ES-DVFS to
produce a new framework for energy efficient real-time systems with fault recovery mechanisms.

28

Chapter 4

Fault-Tolerant Real-Time Systems

In this chapter, we are interested in studying the problem of fault-tolerance in real-time systems.
Scheduling tasks characterized not only by an execution duration constrained by time but also

by needs in energy to realize this execution. First, we describe the embedded systems and more
precisely the wireless sensor networks. At present, these constitute the majority of embedded
applications built around autonomous systems from the fault occurence point of view. We describe
a state of the art about technologies associated with fault recovery. After that, we describe the
problem of fault-tolerance in a system often described as energetically neutral.

4.1 Introduction

Fault tolerance is a method of accomplishing a continuous system service within the presence
of active faults [28]. Numerous fault tolerance techniques were proposed and implemented within
the last 30 years. Some techniques are primarily based on single model software, and might only
be powerful with hardware faults and transient software faults. One example is Rollback/Retry,
additionally called “checkpoint and restart” [29]. In this approach the detection of errors triggers
a system rollback to a previously stored state and a re-execution of the same processing. This
method is primarily based on backward errors restoration and desires an efficient error detec-
tion mechanism. Different techniques apply hardware redundancy to detect and mask errors, as
Triple Modular Redundancy (TMR) [30], in which error detection is executed via contrast of the
consequences of multiple hardware/software devices.

Also, fault tolerance is the opportunity to extend operating despite the failure of a definitive
subset of their hardware or software. There can be either hardware fault or software fault, which
distracts the real time systems to approach their deadlines. They can be categorized as hard
real-time systems, in which the results of missing a deadline may be disastrous, and soft real-time
systems, in which the consequences are nearly smaller. Some examples of hard real-time systems
are a space station, a radar for tracking missiles, a system for monitoring a patient in critical
condition, etc. In these real-time systems, it is important that tasks finish before their deadline
even in the existence of processor failures. This makes fault tolerance a basic concern of hard real-
time systems.

The demand for complex and developed real time computing systems continues to grow where
fault tolerance and energy are essential requirements that are playing a critical role in the design
of new real-time systems. The fault tolerance is known as the ability of the system to react with its

29

4.1 Introduction

specification regarding the presence of faults in any of its elements . Fault tolerance for transient
type can be approached through task re-execution (time redundancy) whereas time as well as
space redundancy are required to tackle permanent or intermittent type faults. Transient faults
are more known as compared to permanent ones whereas frequency of appearance of intermittent
faults is between these two . Thus, tolerance to transient kind of faults is the ultimate requirement
for portable devices which can travel broadly around the globe and suffer several environmental
effects leading to more chance of failure.

Moreover, fault tolerance is the real estate that enables a system to appropriate with its correct
operation even in the existence of faults (errors), and it is broadly achieved by fault detection and
consecutive system recovery [31], [32], [59], [35]. Fault tolerance has been a subject of research
for a long time, and meaningful amount of work has been composed over the years [32], [35], [36],
[37], [38], [39], and [40]. To achieve fault tolerance, systems are commonly constructed such that
some repetition is included. The common types of redundancy used are information, hardware,
and time redundancy.

Fault tolerance is provided by error-detecting and error-correcting codes while adopting in-
formation redundancy, i.e. the data contains extra information (check bits) that can confirm
the correctness of the data before it is used (error detection), or even correct inaccurate data
bits (error-correction). Various error-detecting and error-correcting codes have been suggested
including parity codes, cyclic codes, arithmetic codes etc. [41], [42], [43]. The main disadvantage
of error-detecting and error-correcting codes is that they are restricted to errors that take place
concurrently with transfer of data (system bus) or errors in memory.

Furthermore, Fault tolerance is managed by time redundancy. However, fault tolerance meth-
ods that consume time redundancy are only effective if the faults are of transient type, i.e. errors
that take place, but die out after a short period of time. These transient faults frequently result in
soft faults. The easiest technique that adopt time redundancy deals with soft errors by performing
the same program twice, and it get the appropriate result if the outputs of the two executions
are equivalent. Roll-back Recovery with Checkpointing (RRC) is a famous fault tolerance tech-
nique that correctly manage with soft errors. RRC has been the attraction of researchers for
years [44], [45], [46], [47], [48], [49].

A different approach to recovery block execution is checkpointing, where essential state in-
formation is saved periodically during task execution while error checking procedures are run
simultaneously. If an error is detected, the system state is rolled back to the last checkpoint and
the computation is repeated. Hence it may minimize the amount of recovery overhead compared
to the recovery block approach, checkpointing has two disadvantages: expanded runtime over-
head due to the regular checkpointing during the fault-free execution and the failure to manage
with cases where the error stems from the unique software employment of the task. With recov-
ery blocks, the designer can provide alternate implementations of the same task in the form of
different recovery blocks and these can be activated if the error continues.

Unlike classical re-execution schemes where the task (job) is re-executed if an error is detected,
RRC deal with soft errors by benefiting of previously saved error-free states of the task, assigned
to as checkpoints. During the execution of a job, the task is interrupted and a checkpoint is
captured and stored in a memory. The checkpoint involves enough information such that a task
can efficiently restart its execution from that interrupted point. For RRC it is critical that each

30

Chapter 4. Fault-Tolerant Real-Time Systems

checkpoint is error-free, and this can be happen by, for example executing acceptance tests to
authenticate the exactness of the checkpoint. Once the checkpoint is reserved in memory, the task
carries on with its execution. As soft errors may occur at any time during the execution of a task,
a fault detection process is used to detect the presence of soft errors. There are different error
detection mechanisms that can be used, e.g. watchdogs, duplication schemes etc. [50], [51], [52].
In case that the error detection mechanism detects an error, it forces the task to roll-back to the
latest checkpoint that has been stored.

Relying at the implementation, one-of-a-kind RRC schemes exist, and that they vary among
every different primarily based on the following key factors. The first component is how plenty
data is saved at every checkpoint. With appreciate to this, there are distinctive RRC schemes, i.e.
full checkpointing [53], [54], [55], and incremental checkpointing. In a full checkpointing scheme,
at each checkpoint the whole state of the task is saved, whilst in an incremental checkpointing
scheme most effective the modifications with respect to the most latest saved state are stored.

Another key factor pertains to when checkpoints are taken. With admire to this, there are
different RRC schemes, i.e. equidistant checkpointing [54], [55], and non-equidistant checkpointing
scheme [56], [57], [58]. In equidistant checkpointing, the checkpoints are arranged equally during
the execution of the task (which means that the distance between two successive checkpoints is
always the same), while in non-equidistant checkpointing, the checkpoints are not calmly allotted
throughout the execution of the task (the gap among two successive checkpoints isn’t always
continually the same). As shown on this phase, using fault tolerance is frequently associated with
adding an overhead that can result in: higher hardware value, higher energy intake, and even
affect (degrade) system’s overall performance. Consequently, there need to be a clean aim to
what extent fault tolerance is needed for a selected system. Minimizing the disadvantage due to
using fault tolerance normally requires optimization of the fault tolerance method which is used.
The optimization desires for a given fault tolerance method can also vary some of the specific
classes of computer systems in which fault tolerance is employed. In standard, computer systems
are categorized into non-real-time and real-time systems relying on the requirement to fulfill a
given time constraint.

From the fault tolerance opinion, transient faults and intermittent faults demonstrate them-
selves in a similar manner: they happen for a short time and then disappear without causing
permanent damage. Hence, fault tolerance techniques against transient faults are also usable for
tolerating intermittent faults and vice versa.

4.2 Background on Fault Tolerance

Faults are organized as: development, physical and interaction faults [59]. Based on persistence
faults can further be categorized as permanent, intermittent, and transient [60]. Faults can occur
in hardware or/and software. Researchers of the real-time and fault tolerance community have
described the crucial need for fault tolerance in real-time systems. In [61], authors stated that "a
real-time system can be viewed as one that must deliver the expected service in a timely manner
even in the presence of faults". In [62], authors declared the need for fault tolerance in real-time
systems by expressing that real-time systems must be sufficiently fault-tolerant to withstand losing
large portions of the hardware or the software and still perform critical functions.

31

4.2 Background on Fault Tolerance

There are several different ways in which a program can be developed using formal rules which
guarantee that it will satisfy a specification when executed on an fault-free system. As mentioned
lately, tasks in real-time systems are, by definition, critical in nature. In applications a well-known
as generation shuttles and nuclear power plant controllers, it is vitally important that all tasks
approach their deadlines under all circumstances. However, when a component of a computer
system fails, it will usually produce some undesirable effects and it can be said to no longer
behave according to its specification. Such a breakdown of a component is called a fault and its
consequence is called a failure.

− Failure: A system failure takes place when the service supported by the system differs from
the stated service. For instance, when a user cannot read his stored file from computer
memory, then the suggested service is not supported by the system.

− Error: An error is a disruption of internal state of the system that may lead to failure.
A failure happens when the erroneous state causes an incorrect service to be delivered, for
instance, when certain portion of the computer memory is broken and stored files therefore
cannot be read by the user.

− Fault: The cause of the error is called a fault. An active fault leads to an error; in another
way the fault is inactive. For instance, impurities in the semiconductor devices may lead
computer memory in the long run to behave erratically.

A system fault takes place when a conveyed service deviates from the desired service. In
other words, a system fails when it cannot support the required service [67]. Even a completely
designed computer system can be subject to dissimilar faults and therefore fail erratically. As
shown in [68], processor faults can be broadly classified into two groups: transient and permanent
faults. Transient faults, also named soft errors, are often caused by electromagnetic interference
and cosmic ray radiations. They may cause errors in calculation and dishonesty in data, but are
not continuous. On the other side, permanent faults, also called hard errors can cause hardware
damages to processors and bring them to stop permanently. According to [69] and [70], transient
faults happen more frequently than permanent faults. As real-time computing systems persist to
grow quickly in both scale and complexity, maintaining high reliability becomes an increasingly
challenging issue. Faults in real-time systems that are not subscribed properly in a timely fashion
will cause to violations of timing constraints, which can cause disastrous results if the systems are
safety-critical, e.g. aircraft, nuclear power plant. Furthermore, supporting fault-tolerance features
(the property that enables a system to continue operating properly in the event of failure(s)) to
achieve high reliability is particularly attempt after in such systems. Traditional fault-tolerance
techniques to treat with faults composed of two parts, i.e. fault detection followed by fault
recovery . Examples of techniques that can reveal the processor faults timely and effectively are
listed below:

1. A fail-signal processor to send notifications to other processors when faults occur.

2. Watchdog processors for concurrent control flow checking.

3. Signatures that can be used for detection of hardware and software faults.

32

Chapter 4. Fault-Tolerant Real-Time Systems

4. Sanity or consistence checks.

Instead of duplicating the execution of the whole program, checkpointing in concurrence with
backward error recovery is also a well-known fault-tolerant approach. Checkpointing denotes to
the scheme that determines system states after a period of time and stores a snapshot if no fault
is adjusted. In case of a fault detection, the system rolls back to its pervious correct state. Hence,
that checkpointing is a special passive replication scheme. Active replication schemes usually need
extra system resources, e.g., processing cores, and absorb more energy even under the fault-free
events, but they can sustain run-time faults timely and immediately. On the other side, passive
replications are only involved in the event of run-time failure(s), and so, does not consume system
resources when no faults take place. However, passive replications hold longer to recover from
faults and put the system at risk when timing constraints are very strict. The choice of the desired
replication schemes for different hard real-time systems is a design decision problem and requires
accurate examinations.

Although, it is imperative to explore advanced techniques to provide the timeliness in the
presence of faults for real-time systems. Moreover, both fault tolerance and energy reduction are
basically achieved by investing system slack time, therefore they are two contradictory goals in
nature.

Nowadays, no general technique can be suggested to add fault tolerance in a system. It rely on
the requirements of the application . Fault tolerance can be implemented using two approaches,
i.e. hardware and software fault tolerance. A fault may occur sporadically, or it may be stable
and cause the component to fail permanently. Even when it occurs instantaneously, a fault such
as a memory fault may have consequences that manifest themselves after a considerable time.
Suggestions for real-time systems that can tolerate faults are the MAFT system [63] , MARS
system [64], Maruti operating system [65], and HARTS [66].

A real-time system may be unsuccessful to function accurately either because of faults in the
hardware and/or software (physical faults) or because of not behaving in time (timing faults) due
to overwhelm conditions. Therefore, to prevent the catastrophic results of missing deadlines, it
is fundamental that real-time tasks meet their deadlines even in the presence of faults and/or
overwhelm circumstances.

4.3 Fault Tolerant Techniques

The error detection and fault-tolerance techniques are part of the software architecture. The
software architecture, including the real-time kernel, error detection and fault-tolerance mecha-
nisms are considered fault-tolerant. We use several mechanisms for sustaining faults: equidistant
checkpointing with rollback recovery and active replication. Rollback recovery utilizes time re-
dundancy to tolerate fault appearances. Replication supports space redundancy that permits to
spread the timing overhead among several processors. On one hand, replication is exposed to
correlated faults, whereas checkpointing can detect them. On the other side, an error might be
present undetected in a checkpoint, which might necessitate rollback . Once a fault is detected, a
fault tolerance technique has to be mentioned to handle this fault. The elementary fault tolerance
technique to retrieve from fault occurrences is re-execution . Re-execution is a technique that

33

4.3 Fault Tolerant Techniques

exploits the slack time on the processor to have recovery tasks, which are used to enhance the
reliability of original tasks. Also in re-execution, a process is executed again if affected by faults.
The time needed for the detection of faults is considered for by the error-detection overhead.
When a process is re-executed after a fault detection, the system restores all initial inputs of that
process. The process re-execution operation requires some time for this that is captured by the
recovery overhead. In order to be restored, the initial inputs to a process have to be stored before
the process is executed first time.

Scheduling is also one of the methods to sustain fault in time critical applications. It is
consumed to overcome the drawback of check-pointing in distributed environment. It is classified
as time-sharing scheduling, space-sharing scheduling, and hybrid scheduling (combination of both
time as well as space). Scheduling is used for load balancing as well as fault tolerance in a system
on the basis of space or time sharing.

There are many fault-tolerant techniques such as dual/triple modular redundancy and check-
pointing with rollback mostly used in treating the occurrence of faults. Dual/triple modular
redundancy is frequently considered to achieve reliability against transient faults in multicore
platforms, where multiple processing units perform identical copies for each task and their results
are voted on to produce a single output. However, fault tolerance methods that consume time
redundancy are only effective if the faults are of transient type, i.e. errors that take place, but
die out after a short period of time. These transient faults frequently result in soft faults. The
easiest technique that adopt time redundancy deals with soft errors by performing the same pro-
gram twice, and it get the appropriate result if the outputs of the two executions are equivalent.
Roll-back Recovery with Checkpointing (RRC) is a famous fault tolerance technique that cor-
rectly manage with soft errors. Checkpointing with rollback recovery is a well-effective technique
to endure transient faults. Hence, it acquire meaningful time and energy overheads, which go
emaciated in fault-free execution states and may not even be feasible in hard real-time systems.
Transient faults in fundamental hardware. Checkpointing with rollback-recovery is a compar-
atively, cost-powerful technique against transient faults. Checkpointing was first suggested for
database systems where availability is the primary measure , yet in real-time systems, other es-
sentials such as predictability and timeliness as well as energy consumption should be considered.
Although checkpointing enlarge execution time in the lack of faults, it decreases recovery time
when faults take place. This is because there is no need to re-execute the whole task, but only
the part of the task beginning from the last checkpoint is needed to be re-executed.

Checkpointing with rollback-recovery is a relatively, cost-powerful technique against transient
faults. Checkpointing was first suggested for database systems where availability is the primary
measure, yet in real-time systems, other essentials such as predictability and timeliness as well
as energy consumption should be treated. Although checkpointing increase execution time in the
lack of faults, it decreases recovery time when faults take place. This is because there is no need
to re-execute the whole task, but only the part of the task beginning from the last checkpoint
is needed to be re-executed. At each checkpoint, the system saves its state in a secure device.
When a fault is detected, the system rolls back to the most recent checkpoint and resumes normal
execution. Checkpointing increases the task execution time, and in the absence of faults, it might
cause a missed deadline for a task that completes on time without checkpointing. In the presence
of faults, however, checkpointing prohibits the need for task restarts and increases the probability

34

Chapter 4. Fault-Tolerant Real-Time Systems

of a task completing on time with the correct result. Common checkpointing reduces re-execution
time due to faults but increases task execution time. On the other side, checkpointing has less
effect on task execution in the absence of faults but increases the amount of re-execution that
must be achieved after a fault is detected. Therefore, the checkpointing interval, i.e., the duration
between two consecutive checkpoints, must be attentively chosen to balance checkpointing cost
(the time needed to perform a single checkpoint) with the re-execution time.

The time overhead for re-execution can be decreased with more complex fault tolerance ap-
proaches such as rollback recovery with checkpointing. The main principle of this approach is
to restore the last non-faulty state of the failing process, i.e., to recover from faults. The last
non-faulty checkpoint, has to be stored in advance in the static memory and will be restored if
the process fails. Checkpointing provides an essential technique to reduce re-execution time in
the presence of faults. DVS can also be used to enhance fault tolerance in a real-time system. If
faults occur commonly, the processor speed can be scaled up dynamically.

4.4 Previous Work

Fault-tolerant computing indicates to the correct execution of user programs and system soft-
ware in the existence of faults . It is commonly accomplished through task re-execution or compo-
nent redundancy. In real-time embedded systems, it is important to ensure that task re-execution
does not jeopardize the timely deadline of tasks. Fault tolerance is frequently achieved in real-time
systems through online fault detection, checkpointing, and rollback recovery.

The primary attract of real-time scheduling is to submit deterministic guarantees to timing
constraints in hard real-time systems through schedulability analysis. One efficient behavior is
to design the utilization bound of a program in such a way that the system is deemed to be
schedulable if this bound is never exceeded. Scientists in both scholarly world and industry have
depended on different systems to limit vitality utilization in registering systems. A large portion
of the current embedded systems work in unsecure and fault inclined conditions. Such systems
collect their required energy from the earth with numerous sources of unpredictability. Then
again, more than frequently, these systems have timing requirements that ought to be fulfilled
despite the current issues and constraints said above.

Dynamic Voltage and Frequency Scaling [96] has risen as one of the best framework level
methods for energy consumption. DVFS planning lessens the supply voltage and frequency when
conceivable. Its consequences for preserving energy consumption are obvious where supply voltage
and frequency specifically influence the system energy consumption. In any case, one result of
applying DVFS is the broadened circuit postpone which may undermine the schedulablity of
real-time system. Subsequently, an extraordinary number of procedures considering the issue of
limiting the vitality utilization without jeopardizing the timing limitations on single-core platforms
are proposed for different task models.

For the current DVFS-based research efforts, most of the research either focused on tolerat-
ing fixed number of faults or doubtful constant fault rate. However, it was known that there is
advantages and disadvantages of voltage scaling on the rate of transient faults. Pop et al. [107]
overworked the obstruction of energy and reliability trade-offs for independent heterogeneous em-
bedded systems. The main subject is to recognize transient faults by switching to pre-determined

35

4.4 Previous Work

eventuality schedules and re-executing processes. A latter, constrained programming-based al-
gorithm is expected to demonstrate the voltage levels, process start time and data transmission
time to recognize transient faults and trim energy consumption meanwhile meeting the timing
constraints of the application. Comparable issues for fixed-priority aperiodic/periodic real-time
tasks were previously explored. Broad research has been performed to explore the energy pro-
ficiency of real-time systems from both disconnected and online viewpoint [98], [99] , [97], [89].
The power proficient variant of fixed-priority preemptive scheduling for example, rate monotonic
scheduling, was investigated in [98]. Power reduction is accomplished by exploiting the slack time
both characteristic in system schedule and due to runtime varieties in undertaking execution time.
Moreover, authors in [99] exhibited a scheduling approach for hard real-time tasks according to
fixed priorities needs appointed in a rate monotonic way. The disconnected scheduling utilizes cor-
rect timing examination to infer various voltage scaling factors for each task in light of stochastic
characteristics of task execution time.

The online scheduling approach circulates accessible slack time on priority bases. In light of
the voltage scaling algorithms, four voltage scaling calculations including Sys-Clock, PM-Clock,
and DPM-Clock were proposed in [101] for various equipment which may have high or low voltage
scaling overhead and diverse task set characteristics. Of these algorithms, Sys-Clock relegates a
single frequency to all tasks in a task set, PM-Clock dole out different frequencies to tasks in a
task set, and DPM-Clock powerfully adjusts disconnected task schedule to runtime practices of
tasks execution times.

The heuristic has a disconnected part registering a voltage schedule in light of most pessimistic
scenario execution time, and an online segment using slack time because of varieties in task
execution time for additionally round of energy savings. Both offline and online scheduling schemes
were proposed in [102] to deal with the change time and energy overhead of DVS processors. The
offline schema produces task schedule configuration time in view of an earlier known undertaking
execution time while the online scheme viably suits runtime varieties of task execution time to
accomplish energy savings. Online algorithms were exhibited in [97] to viably diminish system
energy utilization to handle event streams with hard constant guarantees.

The flexible scheduling scheme controls the power method of the processor to suspend the
processing of entry events as late as it could be reasonably be expected. Although energy efficiency
in real-time systems were examined from both offline and online perspectives in the above works,
fault resistance which is an essential outline requirements were not considered. Fault-tolerance is
another essential outline limitation in energy proficient real-time systems. Joint optimization of
energy and fault-tolerance in real-time embedded systems has pulled in impressive consideration
in the previous decade. In [103] and [87], a fixed priority offline scheduling scheme was proposed
based on the rate monotonic scheduling to tolerate faults in hard real-time systems. Authors
proposed DVS methods to achieve slacks in a task schedule to reduce energy utilization while
tolerating faults during task execution. A task in the task schedule is thought to be defenseless
to at most one fault event and the processor can scale its frequency in a persistent range. Fault-
tolerance scheduling strategies were also created in [104] to limit the framework level energy
utilization while as yet safeguarding the systems original dependability. Fault tolerance failure is
accomplished by saving recovery blocks that can be utilized by any task at the runtime.

In addition, authors in [105] exhibited a soft error mindful vitality productive scheduling

36

Chapter 4. Fault-Tolerant Real-Time Systems

procedure for soft real-time systems with stochastic task execution times. The task execution
time estimation is displayed as a joint state-space show, the arrangement of which is found by an
online Monte Carlo examining based recursive system. An offline reliability power administration
conspire is displayed in [106] for real-time tasks with probabilistic execution times. The scheme
sets aside simply enough slack to ensure the required reliability while leaving more slack for energy
management to accomplish better energy savings. In [107], authors tended to the scheduling and
voltage scaling for hard real-time applications that have been statically mapped on heterogeneous
scattered embedded systems. Tasks in a given task set are accepted to share a typical deadline
and the impact of voltage scaling on system reliability is considered.

In [108], authors inspected the effect of using an application task mapping on the reliability
quality of MPSoC. The quantity of transient faults is limited without trading off the timeliness
of the system. All these works are energy-aware fault-tolerance schemes. Furthermore, it may
statically determine offline task schedules to guarantee hard timing constraints, subsequently
preservation cannot use the dynamic slack due to varieties in task execution times and vulnera-
bilities in fault events for further energy savings. Authors in [109]built up an online scheduling
algorithm that joins checkpointing with DVS to tolerate faults in real-time uni-processor systems
with periodic tasks. While, this plan cannot deal with hard real-time task scheduling.

In [110], the authors show a way to deal with the combination of fault-tolerant schedules
for embedded applications with soft and hard real-time constraints. An arrangement of tasks
schedules is combined offline and, at run time, the scheduler chooses the right schedule in light of
the fault occurrence, and the real assignment of execution times with the hard timing constraints
are ensured. In any case, the exhibited approach does not consider energy into account. In this
paper proficient scheduling schemes are proposed to consolidate offline feasibility analysis and
online voltage scaling for hard real-time systems in view of the correct planning examination
of the rate monotonic algorithm (RMA). Two offline scheduling algorithms that empower the
dynamic adjustment are proposed. One is the application level voltage scaling (A-DVS) calculation
where every assignment keep running at a similar processor speed. The other one is the task level
voltage scaling (T-DVS) algorithm where the tasks keep running at their individual speeds. Rather
than continual determining the response time of each task for feasibility examination, the correct
planning analysis approach [111] is utilized as a part of the proposed algorithms for feasibility
examination. This technique strikingly improves the adjustment of the proposed offline A-DVS
and T-DVS algorithms to the runtime behavior of fault events. The adjustment of the offline task
schedules to the runtime behavior of fault occurrences is actualized by first pre-computing and
saving in a query table the most extreme slack necessities for the processor to dynamically back
off, and second recovering and looking at the reserved slack time necessities with the created total
slack in the runtime, also, third dynamically scaling down processor speed when the created slack
time is equivalent to one or more stored slack than requirements. Further, a simple Scalar-based
Intel XScale processor test system, was utilized in [112] to assess the runtime overhead of the
proposed scheduling schemes in addition to extensive simulation experiments. A hard real-time
test ground has been outlined and the proposed algorithms were likewise confirmed on the test
bed.

37

4.5 Summary

4.5 Summary

In this chapter, we present a brief summary about fault-tolerant in real-time embedded sys-
tems. A state of the art about technologies associated with fault recovery is presented. The next
chapter considers the fault model that has reasonable representativity and very general to tolerate
a variety of faults in hardware/software in presence of time and energy constraints.

38

Chapter 5

Energy-Aware Fault-Tolerant Real-Time Scheduling for

Embedded Systems

For the past decades, we have experienced an aggressive technology scaling due to the tremen-
dous advancements of IC technology. As massive integration continues, the power consump-

tion of the IC chips exponentially increases which further degraded the system reliability. This
in turn poses significant challenges to the design of real-time embedded systems. This chapter
targets the problem of designing advanced real-time scheduling algorithms that are subject to tim-
ing, energy consumption and fault-tolerant design constraints. To this end, we first investigated
the problem of developing scheduling techniques for uniprocessor real-time systems that mini-
mizes energy consumption while still tolerating up to k transient faults to preserve the system’s
reliability. Two scheduling algorithms are proposed: The first algorithm is an extension of an
optimal fault-free low-power scheduling algorithm, named ES-DVFS. The second algorithm aims
to enhance the energy saving by reserving adequate slack time for recovery when faults strike. We
derive a necessary and sufficient condition that can be checked efficiently for the time and energy
feasibility of aperiodic jobs in the presence of faults. Later, we formally prove that the proposed
algorithm is optimal for a k-fault-tolerant model. Our simulation results show that, the proposed
approach can achieve more energy savings over previous works under reliability constraint.

5.1 Introduction

Embedded systems are becoming increasingly important in our lives. In these embedded
devices, the management of energy is a crucial issue. They are more and more varied and appear
in extremely diverse sectors such as transport (avionics, cars, buses, ..), multimedia, mobile phones,
game consoles, etc. A large part of embedded systems have needs for autonomy and limitations
of space (small size) and energy (limited consumption). As a result, the major technological and
scientific challenge is to build systems of trust from the point of view of the functionalities provided
and the rendered quality of service. It’s more about designing these systems at an acceptable cost.

For the past several decades, we have experienced tremendous growth of real-time systems and
applications largely due to the remarkable advancements of IC technology. However, as transistor
scaling and massive integration continue, the dramatically increased power/energy consumption
and degraded reliability of IC chips have posed signficant challenges to the design of real-time
embedded systems [71]. Therefore, it is imperative to develop efficient and effective power/energy

39

5.1 Introduction

management techniques for real-time systems while satisfying the timing constraints. For the past
two decades, extensive power management techniques have been developed on energy minimization
for real-time systems [72], [73].

Such a problem is usually treated by Dynamic Voltage and Frequency Scaling (DVFS) methods
that affect the speed of the processor, which directly affects the energy consumption of the system.
The energy-efficient scheduling of real-time tasks in the presence of DVFS has been extensively
studied in the last decade [74], [75], [76].

At the same time, it is observed that as embedded real-time systems become more and more
complex, the required level of reliability for such systems appears to be another open problem.
Many of these systems tend to be situated at harsh, remote or inaccessible locations. Conse-
quently, it is often difficult and sometimes even impossible to repair and to perform maintenance.
This necessitates the use of fault-tolerant techniques. Fault-tolerant computing refers to the cor-
rect execution of user programs and system software in the presence of faults [77]. Nowadays,
the impacts of system failures become more and more substantial, ranging from personal incon-
venience, disruption of our daily lives, to some catastrophic consequences such as huge financial
loss. Conceivably, guaranteeing the reliability of computing systems has also been raised to a first-
class design concern. Recent studies indicate that the emerging low-power design techniques [74]
further increase the susceptibility of VLSI circuits to transient faults. Left unchecked, the high
power/energy consumption and deteriorating reliability of IC chips will handicap the availabil-
ity of future generations of real-time computing systems. Hence, faults must be detected and
convenient recovery operations must be performed within the timing constraints.

Processor faults can be largely classified into two categories: transient and permanent faults
[78]. Transient faults are temporary malfunctioning of the computing unit or any other associated
components caused by factors such as electromagnetic interference and cosmic ray radiations,
which causes incorrect results to be computed. On the contrary, a permanent or hard fault in
hardware is an erroneous state that is continuous and stable. Permanent faults in hardware are
caused by the failure of the computing unit. We focus in this chapter on the transient fault
since, in most computing systems, the majority of errors are due to transient faults [79]. In the
case of an energy-efficient system, reliability also means ensuring that the system will never be
short of energy to ensure its treatment. Anticipation of possible cases of energy can, again, be
implemented on the basis of the flexibility offered by the system at the level of the execution of
the tasks.

In this chapter, we are interested in the problem of real-time scheduling under reliability and
energy constraints. It’s about considering real-time tasks that have needs which are expressed
on the one hand in terms of processing time and energy consumed by the processor and on the
other hand in terms of the number of tolerated faults. A task configuration is energy overloaded,
this means that the amount of energy consumed is greater than the amount of energy available.
In addition, the amount of execution time requested is smaller than the available capacity, the
system will therefore typically be able to meet all its deadlines or else catastrophic consequences
will occur. A major question that needs to be answered is: how to schedule real-time tasks in
case of energy where the system keeps reliable and able to tolerate up to k faults.

To answer this question, a uniprocessor Earliest Deadline First (EDF) scheduling algorithm
is first analyzed to derive an efficient and exact feasibility condition by considering energy man-

40

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

agement and fault-tolerance. Second, the proposed algorithm is designed to achieve energy au-
tonomous utilization of the processor while meeting the task deadlines.

5.2 Related Work

Researchers in both academia and industry have resorted to various techniques to minimize en-
ergy consumption in computing systems. Among these, Dynamic Voltage and Frequency Scaling
has risen as one of the best framework level methods for energy consumption. DVFS scheduling
reduces the supply voltage and frequency when conceivable for preserving energy consumption.
Subsequently, a great number of procedures considering the issue of limiting the energy consump-
tion without jeopardizing the timing constraints on uniprocessor platforms are widely proposed in
literature for different task models. Many of the previous work that studied the problem of energy
efficient frameworks for real-time embedded systems employ the Dynamic Voltage and Frequency
Scaling (DVFS) technique [74], [80], [109], [82], [83].

Yao et al. [80] developed a DVFS scheme for a set of aperiodic real-time tasks scheduled under
EDF policy with a focus of minimizing dynamic power consumption for real-time systems. In
[82], authors considered the temperate and leakage dependencies and proposed an efficient DVFS
scheme to minimize the overall energy consumption while guaranteeing the timing constraints
of a real-time system. Later in [83], we settle the hypothesis for energy consumption in real-
time systems, we proposed an energy efficient scheduler of aperiodic jobs for real-time embedded
systems. Specifically, we applied the concept of real-time process scheduling to a dynamic voltage
and frequency scaling (DVFS) technique. Further, we proposed in [84] an energy guarantee
scheduling and voltage/frequency selection algorithm targeting at real-time systems with energy
harvesting capability. We show that our scheduler achieves capacity savings when compared to
other schedulers.

On the other side, fault tolerance, and in general reliability, objectives are of paramount
importance for embedded systems [85]: faults and failures can occur in real-time computing
systems and can cause hardware errors and/or deadline violations. Since soft errors are more
common in computing systems, most researches related to fault tolerance focus on soft errors.
Such research efforts was done on scheduling techniques with the joint consideration of energy
efficiency and fault tolerance.

Zhu et al. [86] targeted the reliability problem of a real-time system as the probability to
execute all tasks, with or without fault occurrences and proposed a linear and an exponential
model to capture the effects of dynamic voltage frequency scaling (DVFS) on transient fault rate.
They showed that energy management through DVFS is able to reduce the system reliability.
Based on this model, they proposed a recovery scheme to schedule a recovery for each scaled job
to compensate the reliability loss caused by DVFS.

Melhem et al. [87] investigated the reliability problem for periodic task sets scheduled under
EDF on a monoprocessor with the restriction that there is at most one failure (i.e. k = 1). Authors
presented a checkpointing scheme that can reduce the fault-recovery overhead significantly at the
cost of runtime overhead, this means by inserting checkpoints, which may potentially improve the
system schedulability and leave more space for energy management. Zhang et al. [88] investigated
the same problem but on fixed-priority real-time tasks. For this sake, authors introduced a

41

5.3 Model and Terminology

combination of checkpointing and DVFS scheme for tolerating faults for periodic task sets while
minimizing energy consumption.

More recently, Zhao et al. [89] proposed the Generalized Shared Recovery (GSHR) technique
to reserve computing resources that can be shared by different tasks to improve the energy-saving
performance. Later, this work was extended for a more general real-time periodic task model [85].
The proposed algorithms aim to determine the processor speed and resource reservation for each
task to achieve the goal of energy minimization under the task-level reliability requirement. The
advantage of this approach is that the reliability can be quantified and the impacts of DVFS to
reliability can also be taken into consideration.

Recently, Han et al. [90] developed effective scheduling methods that can save energy and, at
the same time, tolerate up to k transient faults when scheduling a set of aperiodic real-time tasks
on a single processor under the EDF policy. For this sake, authors proposed three algorithms:
The first two algorithms are based on the previous work performed in [80]. The third algorithm
extends the first two by sharing the reserved computing resources and hence better energy saving
performance can be achieved. The main drawback of this work is that the problem of improving
the system reliability in presence of fault tolerance cannot be simply solved by modifying the work
done in [80] .

5.3 Model and Terminology

In this section, we first introduce the system models and related notations. We then formulate
our problem formally.

5.3.1 Task Model

We consider a set of n independent aperiodic real-time jobs J = {J1, J2, · · · , Jn}, where Ji
denotes the ith job in a job set J and is characterized by a tuple (ai, ci, di). The definition of
these parameters are as follows:

− ai is referred to the arrival time, this means that the time when job Ji is ready for execution.

− ci is referred to the worst case execution time (WCET) under the maximum available speed
Smax of the processor.

− di is considered as the absolute deadline of job Ji.

We denote the laxity of the job Ji by di − (ai − ci). We consider that the job set J is feasible in
the real-time sense and under fault-free scenario. That means that when the energy constraints
are not taken into consideration, there exists a feasible schedule where all deadlines in J are met.

5.3.2 Power and Energy Model

We assume the speed / frequency of the processor is equipped with a DVFS-enabled with N
discrete frequencies f ranging from fmin = f1 ≤ f2 ≤ · · · ≤ fN = fmax. We use the term slowdown
factor or processor speed SN as the ratio of the scheduled speed to the maximum processor speed,
this means that SN = fN/fmax. The CPU speed can be changed continuously in [Smin, Smax].

42

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

Consequently, when a job Ji is executed under speed Si, the worst case execution time of Ji
becomes equal to ci/Si.

For embedded systems, the power is consumed mainly by the processor, and off-chip devices
such as memory, I/O interfaces and underlying circuits [91]. Howeever, it has been observed
that the power consumption is dominated by dynamic power dissipation, which is quadratically
related to supply voltage and linearly related to frequency. In this part, we distinguish between
frequency-dependent and frequency-independent power components. Specifically, we adopt the
overall power consumption (P) at a slowdown factor S as follows:

P = Pind + Pdep = Pind + CefS
α (5.1)

Where Pind stands for the frequency-independent power including the power consumed by off-
chip devices and constant leakage power, which is independent of the system supply voltage and
frequency. Cef is denoted as the effective switching capacitance. α is the dynamic power exponent,
which is a constant usually larger than or equal to 2.
Pdep is considered to be the frequency-dependent active power, including not only the processor
power, but also any power that depends on the processing speed S. Consequently, the energy
consumption of a job Ji running at the speed Si, denoted as Ei(Si), can be expressed as:

Ei(Si) = (Pind + CefS
α
i).

ci
Si

(5.2)

We consider that preemption overheads are negligible. Otherwise, they can be incorporated into
the job’s worst-case execution times [92].

5.3.3 Energy Storage Model

Our system relies on an ideal energy storage unit (battery or supercapacitor), that has a
nominal capacity, namely C, corresponding to a maximum energy (expressed in Joules or Watts-
hour). The energy level has to remain between two boundaries Cmin and Cmax where C =

Cmax − Cmin. We consider that C(t) stands for the energy stored in the energy storage unit at
time t. At any time, the stored energy is no more than the storage capacity, that is

C(t) ≤ C ∀ t (5.3)

5.3.4 Fault Model

During the execution of an operation computing system, both permanent and transient faults
may occur due to various reasons, like hardware defects or system errors. In this work, we focus
on transient faults since it has been shown to be dominant over permanent faults especially with
scaled technology sizes [93].

We consider that the proposed system can afford a maximum of k transient faults. The used
system is usually able to detect faults at the end of each job Ji’s execution using acceptance or
sanity tests [94]. We assume that the timing and energy overhead for fault detection, denoted as
TOi and EOi respectively, are not negligible and are not subject to frequency variations.

43

5.3 Model and Terminology

Faults can occur anywhere at any time during the execution of jobs and multiple faults may
hit a single job. The fault recovery scheme in this chapter is based on re-executing the affected
job. Consequently, Ri stands for the maximum recovery overhead for executing a job Ji under the
maximum speed Smax, which is equal to ci, or Ri = ci . When a fault occurs during the execution
of a job, say Ji , a recovery job of the same deadline di is released, which is subject to preemption
as well.

5.3.5 Terminology

We now give some definitions we will be needing throughout the remainder of this chapter.

Definition 5.12. A schedule Γ for a job set J is said to be valid if the deadlines of all jobs of J
are met in Γ, starting with a storage fully charged.

Definition 5.13. A system is said to be feasible if there exists at least one valid schedule Γ for
J with a given energy source. Otherwise, it is infeasible.

In this chapter, we consider that the limiting factors are not only time but are either, both
time and energy, only time or only energy. We focus here on feasible systems only.
Formally, we introduce a novel terminology which is peculiar to energy constrained computing
systems.

Definition 5.14. A schedule Γ for a job set J is said to be time-valid if the deadlines of all jobs
of J are met in Γ, considering that ∀ 1 ≤ i ≤ n, Ei(Si) = 0.

Definition 5.15. A system is said to be time-feasible if there exists at least one time-valid schedule
Γ for J . Otherwise, it is infeasible.

Definition 5.16. A schedule Γ for a job set J is said to be energy-valid if the deadlines of all
jobs of J are met in Γ, considering that ∀ 1 ≤ i ≤ n, ci = 0.

Definition 5.17. A system is said to be energy-feasible if there exists at least one time-valid
schedule Γ for J . Otherwise, it is infeasible.

5.3.6 Problem Formulation

We formulate our problem formally as follows:
Given a set real-time job J of n independent aperiodic jobs J = {J1, J2, · · · , Jn} with a release
time, worst-case execution time and deadline, running on a DVS-enabled platform, and using a
monoprocessor. Is it possible to minimize the overall energy consumption for all tasks and potential
recovery operations without deadline violations under any fault scenario with at most k transient
faults? In our analysis, we use the ES-DVFS scheduling policy [83], which was proved to be
optimal in minimizing the total energy consumption for uniprocessor systems under conventional
(non-fault-tolerant) analysis techniques. To answer this question, We have to find the CPU
speed decisions (including the recoveries) so as to minimize the overall energy consumption within
predefined timing constraints when no more than k faults occur.
We refer to a set of speed values during the whole time interval where J is executed as a speed
schedule.

44

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

5.4 Fault Tolerant Speed Schedule

5.4.1 Overview of the Scheduling Scheme

In this section, we present an approach to the development of a fault-tolerant DVFS scheduling
for dynamic-priority real-time job set on uniprocessor systems to reduce the energy consumption
while still guaranteeing the timing constraints. The proposed algorithm is based on the Energy
Saving - Dynamic Voltage and Frequency Scaling (ES-DVFS) algorithm that we previously pro-
posed in [83].

Definition 5.18. A job set J is said to be k-fault tolerant if all jobs and potential recovery
operations can be completed before their corresponding deadlines under any fault scenario with at
most k transient faults.

To ease the presentation of our approach and before proceeding, we first state some basic defini-
tions and then reiterate briefly the general idea of ES-DVFS.

Definition 5.19. Given a real-time job set J of n independent aperiodic jobs such that J =

{J1, J2, · · · , Jn}.

− J (ts, tf) denotes the set of jobs contained in the time interval φ = [ts, tf], i.e jobs that are
ready to be processed at time ts and with deadlines at or earlier than tf . J (φ) = {Ji | ts ≤
ai < di ≤ tf}.

− W (φ) denotes the total amount of workload of jobs in J (φ) in the time interval [ts, tf], that
means that the total worst case execution time of jobs completely contained in the interval,

W (φ) =
∑

JiεJ (φ)

ci (5.4)

− The processor load h(φ) over an interval φ = [ts, tf] is defined as

h(φ) =
W (φ)

tf − ts
(5.5)

− The intensity of jobs in the time interval φ = [ts, tf], denoted as I(φ), is defined as

I(φ) = max
JjεJ (φ)

(∑
di≤dj

ci

dj − (tf − ts)

)
(5.6)

− We consider that the fault-related overhead of a time interval φ = [ts, tf], denoted as Wk(φ)

is
Wk(φ) = Wr(φ) +WTO(φ) (5.7)

Where Wr(φ) stands for the worst-case reserved workload to be used in case of recovery, i.e.
Wr(φ) = k× (Rl + TOl) and l represents the index of the job with the longest recovery time

45

5.4 Fault Tolerant Speed Schedule

in J (φ). Jl = {Ji | max(Ri + TOi), JiεJ (tφ)} and WTO(φ) denotes the overhead imposed
by fault detection from regular jobs, i.e.

WTO(φ) =
∑

JiεJ (φ)

TOi (5.8)

Further, Wk(φ) ≥Wk−1(φ) for k ≥ 1, since all recovery of jobs have non-negative execution
times. For this sake, we restrict our analysis to the k-fault tolerance where we have exactly
k faults when investigating the worst-case reserved recovery of fault scenarios with at most
k faults.

− The energy demand of a job set J on the time interval φ = [ts, tf] is

g(φ) =
∑

ts≤rk,dk≤tf

Ek(Sk) (5.9)

Given a real-time job set J , ES-DVFS was provably optimal in minimizing energy consumption
in on-line energy-constrained setting by providing sound dynamic speed reduction mechanisms
[83]. ES-DVFS provides an exact energy management technique as function of the processor
frequency in such a way that time constraints are still respected. Using this framework, the speed
of the jobs ready to be executed is not fixed in the used interval as the previous work in [80] but
is dynamically adjusted on the fly. ES-DVFS is employed as follows:

− Step 1: Identify an interval φ = [ts, tf], add the ready jobs to the job queue Q and select
the job Ji with the highest priority.

− Step 2: Calculate the effective processor load h(φ) and intensity I(φ) using equations 5.5
and 5.6 respectively.

− Step 3: Set the speed Si of job Ji to the maximum between h(φ) and I(φ).

− Step 4: In case of preemption, update Si.

− Step 5: Remove job Ji from the queue Q.

− Step 6: Repeat step (1) - (6) until Q is empty.

Moreover, we proved that ES-DVFS provides an optimal speed schedule for a given job set J .

Lemma 5.1. [83] An optimal speed schedule for a job set J is defined on a set of time intervals

φ = [ts, tf] in which the processor maintains a constant speed Si = max

(
I(φ), h(φ)

)
where h(φ)

and I(φ) are respectively the workload and intensity of jobs in φ = [ts, tf] and each of these
intervals [ts, tf] must start at ts and with deadlines at or earlier than tf .

5.4.2 Concepts for the EMES-DVFS Model

However, ES-DVFS is optimal in case of fault-free conditions. Hence, To make the above ES-
DVFS fault-tolerant, we adopt an approach (we call it MES-DVFS) is to take the fault recovery

46

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

into consideration when calculating the effective processor load and intensity in any interval φ =

[ts, tf], i.e. to replace h(φ) and I(φ) with hm(φ) and Im(φ) respectively, such that

hm(φ) =

∑
JiεJ (φ)

ci + k ×Rl

dmax −WTO(φ)− k × TOl
(5.10)

Where dmax is the maximum deadline in the job set J (φ), l is the index of the job with the longest
recovery in J (tφ) and WTO(φ) stands for the total fault-detection overheads for regular jobs as
defined in Definition 5.19.

In addition, the intensity of the jobs in J (φ) at current time t is

Im(t) = max
JjεJ (φ)

(∑
di≤dj

ci + k ×Rl

dj − t−WTO(φ)− k × TOl)

)
(5.11)

Aydin, in [95], showed that the feasibility condition of scheduling a job set J by using EDF
scheduler on a single processor that can tolerate a maximum number of k transient faults can be
summarized as

Theorem 5.4. [95] Given a real-time job set J with k faults to be tolerated and Smax = 1, if for
each interval [ts, tf] , we have ∑

JiεJ (ts,tf)

ci +Wft(ts, tf)

tf − ts
≤ 1 (5.12)

When a fault is detected, and for the sake of reduce the total energy consumption for both the
original jobs and their recovery copies, MES-DVFS executes the copy of the recovered job using
a scaled processor speed (Si ≤ Smax). However, this may not be energy efficient since the fault
rate is usually very low in practice.

An extended approach for MES-DVFS (we call it EMES-DVFS), is to execute the recovery copies
under the maximum possible processor speed, usually at Smax.

Hence, the intensity calculation of the jobs in J (φ) can be modified correspondingly, as equa-
tion 5.13

Ie(t) = max
JjεJ (φ)

(∑
di≤dj

ci

dj − t−Wk(φ)

)
(5.13)

Further, the effective processor load of the jobs in J (φ) can also be modified correspondingly,
as equation 5.14

he(φ) =

∑
JiεJ (φ)

ci

dmax −Wk(φ)
(5.14)

47

5.4 Fault Tolerant Speed Schedule

5.4.3 Description of the EMES-DVFS Scheduler

In what follows, we consider a given set of n jobs J = {J1, J2, · · · , Jn} that can tolerate up
to k faults. Let Q(φ) be the list of uncompleted jobs ready for execution at in the time interval
φ = [ts, tf]. We can formulate our EMLPEDF algorithm to obey the following rules:

Rule 1: The EDF priority order is used to select the future running jobs in Q(φ).
Rule 2: The processor is imperatively idle in [ts, ts + 1) if Q(φ) is empty.
Rule 3: The processor is imperatively busy in [ts, ts+1) if Q(φ) is not empty and 0 < C(ts) ≤ C.
Hence, the following steps must be performed:

1. Select the job, say Ji with the highest priority.

2. Calculate the effective processor load he(φ) and intensity Ie(φ) using equations 5.14 and
5.13 respectively.

3. Set the speed Sei of job Ji to the maximum between he(φ) and Ie(φ).

Rule 4: If Sei < Smin, then Sei = Smin ∀ JiεJ (φ).
Rule 5: If job, say Jj is released with dj < di, then update Sei by Rule 3.
Rule 6: If job, say Jk is released with dk > di, then complete the execution of Ji.
Rule 7: If job, say Jk is released with dk > di, and ck > dk − di then update Sei by Rule 3.
Rule 8: Calculate the energy consumption Ei(Sei) according to eq. (5.2).
Rule 9: Calculate the remaining energy in the battery at the end of the execution.
Rule 10: Remove job Ji from the queue Q(φ).
Rule 11: Repeat step (1) - (8) until the queue Q is empty.

5.4.4 Feasibility Analysis

When the job set J is feasible, it is not difficult to verify that Se(φ) ≤ Sm(φ) for a given
interval φ = [ts, tf] since

∑
JiεJ (φ)

ci + Wk(φ) ≤ tf − ts, where Sm(φ) and Se(φ) are equal to

max

(
Im(φ), hm(φ)

)
and max

(
Ie(φ), he(φ)

)
respectively.

More importantly, since EMES-DVFS can be successfully applied for a given job set J , then
we can guarantee the feasibility of the resulted schedule. This is summarized in the following
theorem.

Theorem 5.5. EMES-DVFS can guarantee that the deadlines of all jobs can be met as long as
the following two constraints are satisfied : (1) no more than k faults occur; (2) ∀ i ε [1, n], where
n is the number of jobs in the job set J , we have Sei ≤ 1 and C(t) > 0 ∀ t.

Proof. In EMES-DVFS, a time interval φ = [ts, tf] is only reserved for executing jobs and their
recovery copies in the interval. For any job with higher priority, say Jh, and ready at time t, with
possible execution overlapping with φ , the EMES-DVFS scheduler must preempt the running job
and begin executing Jh and hence we will have a new slowdown factor that forces Jh to finish
within the interval φ. Similarly, for any lower priority job (e.g. Jl) with possible execution
overlapping with φ, the EMES-DVFS scheduler will update the processor speed and continue

48

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

execution. Jl is excluded from execution in the time interval φ and will be postponed to the next
interval. Hence, scheduling decisions are only applied online when any of the following events
really arrive: 1) Event 1: a new aperiodic job is ready and is added to the job queue. 2) Event 2:
the current job completes its execution.
Therefore, to prove the theorem, it is sufficient to prove that when we set the processor speed
to be Sei, then the schedulability of all jobs in φ is guaranteed in the worst case scenario (i.e.
against k faults), as long as Sei ≤ 1 and the energy reservoir is not fully depleted (C(φ) > 0). We
prove this by contradiction. Consider that Jb = (rb, cb, db) ε J (φ) misses its deadline when the
processor speed is set to Sei. Here, we have 2 cases:
Case 1: Jb misses its deadline because of time starvation. Then we must be able to find a time
t ≤ rb, such that for interval φ′ = [t, db], we have W (φ′)

Sei
+Wk(φ

′) ≥ db − t. Here we have 2 cases:

Case 1a: Jb is not contained in the time interval φ (i.e. db ≥ tf). In this case, event 2
occurs, which means that the current running job, say Ji, will complete its execution without
being preempted and job Jb will be executed in the next time interval. This contradicts that Jb
misses its deadline.

Case 1b: Jb is contained in the time interval φ (i.e. db ≤ tf). In this case, event 1 occurs,
which means that the EMES-DVFS scheduler updates the speed schedule of the processor for
all the jobs including the new one in the job queue and consequently Sei is updated to another
slowdown value S′ei such that S′ei ≥ Sei and φ′ ⊆ φ. Here we have 2 cases:

Case 1b1: Effective processor load he(φ′) is greater than the intensity Ie(φ′). This means that
S′ei(φ

′) = he(φ
′). But, he(φ′) is equal to W (φ′)

dmax−Wk(φ′)
which is greater than or equal to Sei. Since

S′ei(φ
′) ≥ Sei, then we have W (φ′)

S′ei
≤ W (φ′)

Sei
. Take Eq. 5.14 into the right-hand side of the above

inequality and add Wk(φ
′) to both sides. We have W (φ′)

S′ei
+ Wk(φ

′) ≤ db − t ≤ dmax − t. This
violates the assumption that Jb misses its deadline.

Case 1b2: Effective processor load he(φ′) is smaller than the intensity Ie(φ′). This means that

S′ei(φ
′) = Ie(φ

′). But, Ie(φ′) is equal to max
JjεJ (φ′)

(∑
di≤dj

ci

dj−t−Wk(φ′)

)
which is greater than or equal to

Sei. Since S′ei(φ
′) ≥ Sei, then we have

∑
di≤dj

ci

S′ei
≤

∑
di≤dj

ci

Sei
. Take Eq. 5.13 into the right-hand side

of the above inequality and add Wk(φ
′) to both sides. We have W (φ′)

S′ei
+ Wk(φ

′) ≤ db − t. This
violates the assumption that Jb misses its deadline.

Case 2: Jb misses its deadline because of energy starvation. This means that .db is missed
with energy demand g(db) = 0. Then we must be able to find a time t0 ≤ db where a job with
deadline after db is released and no other job is ready just before t0 and the energy storage unit is
fully replenished i.e. C(t0) = C. The processor is busy at least in the time interval φ′ = [t0, db].
Here we also have 2 cases:

Case 2a: No job with deadline greater than db executes within the time interval φ′. This
means that all the jobs that execute within φ′ have release time at or after t0 and deadline at
or before db. The amount of energy needed to fully execute these tasks is g(φ′). But since the
processor is always busy in the time interval φ′, then jobs are executed with the minimum possible
speed. Further, the energy reservoir is fully charged at t0. Consequently, g(φ′) < C(t0) < C. We

49

5.4 Fault Tolerant Speed Schedule

conclude that all jobs ready within φ′ can be fully executed with no energy starvation which
contradicts the deadline violation at db with C(db) = 0.

Case 2b: At least one job, say Jm is released within time interval φ′ and with with rm > rb.
Here we have 2 cases:

Case 2b1: Jm is released with dm < db, therefore we have to update Sei by Rule 3. Let t2 be
the latest time where Jm is executed. As dm is lower than db and jobs are executed according to
preemptive EDF, we have rm ≥ rb and Jb is preempted by the higher priority job Jm. Thus, the
processsor speed must be updated, otherwise dm will be violated. Since the processor is busy all
the times in [t2, db] and the job set J is time-feasible, then Sem will be the minimum speed for
the execution of Jm and consequently g(t2, db) < C(db). Consequently, the amount of energy that
Jm require is at most g(t2, db). That contradicts deadline violation and C(db) = 0.

Case 2b2: Jm is released with dm > db. We consider two cases: (i) cm < dk− db, hence Jb will
complete its execution (Rule 6) and the proof is therefore similar to case 2a. (ii) cm > dk − db,
hence Seb must be updated (Rule 7) and the proof is therefore similar to case 2b1.

Since all jobs in J are executed within time intervals in EMES-DVFS and all jobs within
these time intervals are still schedulable when the corresponding speed is applied, we prove the
theorem.

We state the optimality of EMES-DVFS by proving that a job set J is feasible in a k-fault-
tolerant if and only if all the jobs in J are executed without violating time and energy constraints.
This violation is due to one of the two following reasons: either job, say Ji lacks time (Lemma
5.2) or job Ji lacks energy (Lemma 5.3) to complete its execution before or at deadline di. The
time starvation occurs when deadline di is missed with the energy reservoir not exhausted at di.
On the other side, the energy starvation case is when the energy reservoir is fully depleted at di
and Ji is not completed.
Further, the feasibility of the EMES-DVFS scheduler is guaranteed, which is formulated in Lemma
5.2 and Lemma 5.3.

Lemma 5.2. A real-time job set J can be time-feasible in a k-fault-tolerant manner by EMES-
DVFS if and only if all the jobs in J can meet their deadlines when they are executed based on
the processor speeds determined by EMES-DVFS for every time interval [ts, tf].

Proof. Only if part. Directly follows Theorem 5.5.
If part. Suppose the contrary. Let us consider J (φ) as the set of jobs contained in the time
interval φ = [ts, tf], this means jobs that are ready to be processed at or after time ts and with
deadlines at or earlier than tf . We denote a fault pattern f = {f1, f2, · · · , fn}, where fi refers to
the number of faults affecting job Ji and its recovery. Hence, we say that f is a k-fault pattern
if the total number of faults is exactly k. Formally he(φ) ≤ 1 for all intervals [ts, tf]. However,
there is a j-fault pattern j ≤ k (say f j) resulting in deadline miss(es). Let us assume that the
first deadline violation occurs at t = di and that t0 is the latest time preceding di such that either
the processor is idle or a job (recovery) of deadline > di is executing.
We note that the time t0 is well-defined in a way that it corresponds to a job release time.
In addition, the processor is continuously busy executing jobs (recovery) in the time interval

50

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

φ0 = [t0, di). Now, let us denote f0 ⊂ f j be the subset of faults affecting jobs in the time interval
φ0. Note that the number of faults in f0 is obviously smaller than k. Since EDF is a work-
conserving scheduling algorithm, this means that the processor is never kept idle unless there are
no ready jobs, the deadline violation at di and the above definition of t0 imply that the available
processor time in the interval time interval φ0 was not sufficient to accommodate the increase in
the processor demand even there is no energy starvation in the interval φ0 (the battery is not fully
replenished at time di). Consequently, we obtain

∑
JiεJ (φ0)

ci+ j×Rl > dmax−WTO(φ0)− j×TOl,

where j is the number of faults in φ0 and l stands for the index of the job with the longest
recovery time in J (φ0). But since

∑
JiεJ (φ)

ci +Wk(φ) ≤ di − t0 (he(φ) ≤ 1) and Wk(φ) > Wk(φ
0)

and
∑

JiεJ (φ)

ci >
∑

JiεJ (φ0)

ci, we get
∑

JiεJ (φ0)

ci +Wk(φ
0) ≤ di− t0 contradicting our assumption that

a deadline violation occurs at di.

Lemma 5.3. A real-time job set J can be energy-feasible in a k-fault-tolerant manner by EMES-
DVFS if and only if all the jobs in J can meet their deadlines when they are executed based on
the processor speeds determined by EMES-DVFS considering that for every time interval [ts, tf],
g(ts, tf) > 0.

Proof. Only if part. Directly follows Theorem 5.5.
If part. Suppose the contrary. Let us consider J (φ) as the set of jobs contained in the time
interval φ = [ts, tf]. We also denote a fault pattern f = {f1, f2, · · · , fn}, where fi refers to the
number of faults affecting job Ji and its recovery. Hence, we say that f is a k-fault pattern if the
total number of faults is exactly k and the energy in the reservoir is sufficient to execute all jobs
in φ. Formally g(φ) > 0 for all intervals [ts, tf]. However, there is a j-fault pattern j ≤ k (say f j)
resulting in deadline miss(es) due to energy starvation. Let us assume that the energy reservoir
becomes empty at t = di (C(di) = 0) and that t0 is the latest time preceding di such that the
processor is still executing a job (recovery) of deadline < di.
We note that the time t0 is well-defined in a way that it corresponds to a job release time.
In addition, the processor is continuously busy executing jobs (recovery) in the time interval
φ0 = [t0, di). Now, let us denote f0 ⊂ f j be the subset of faults affecting jobs in the time
interval φ0. Note that the number of faults in f0 is obviously smaller than k. Since EDF is
a work-conserving scheduling algorithm, this means that the processor is never kept idle unless
there are no ready jobs, the deadline violation at di and the above definition of t0 imply that
the available energy in the reservoir in the time interval φ0 was not sufficient to accommodate
the increase in the energy demand even there is no time starvation in the interval φ0, this means∑
JiεJ (φ0)

ci+j×Rl ≤ dmax−WTO(φ0)−j×TOl, where j is the number of faults in φ0 and l stands

for the index of the job with the longest recovery time in J (φ0). But since the job set J (φ) is
feasible, then g(φ) > 0. In addition, the energy demand in φ is greater than the energy demand
in φ0, since the number of faults in φ (k) is more than that in φ0 (j), i.e. g(φ) > g(φ0). Hence, we
get g(φ) > g(φ0) > 0 contradicting our assumption that a deadline violation occurs at di because
of energy starvation.

51

5.5 Simulation Results

Now, we may draw Theorem 5.6, a major result of optimality for uniprocessor scheduling in a
k-fault-tolerant manner by EMES-DVFS with time and energy constraints.

Theorem 5.6. The EMES-DVFS scheduling algorithm is optimal for a k-fault-tolerant model.

Proof. According to Lemma 5.2, EMES-DVFS can schedule a given set of jobs J in a k-fault-
tolerant manner, without violating timing constraints when the energy demand is lower than the
maximum energy that is available in the reservoir. According to Lemma 5.3, EMES-DVFS can
schedule a given set of jobs Γ in a k-fault-tolerant manner, without violating energy constraints
when the processor demand is cannot exceed the maximum available processor time that could
be available in any given time interval. As a conclusion, if EMES-DVFS can schedule a given
set of jobs J for a given time or/and energy constraints without time starvation and energy
starvation, are the only two reasons for deadline violations, then we conclude that EMES-DVFS
is optimal.

5.5 Simulation Results

In this section, we compare the performance of four scheduling algorithms: EMES-DVFS,
MES-DVFS, NPM and LPSSR proposed in [90]. NPM scheme executes jobs with maximum
frequency and does not scale down the voltage/frequency.

We developed a discrete event-driven simulator in C that generates a job set J where the
number of jobs varies from 10 to 50. The simulation is repeated 100 times for the same number
of jobs.

For the sake of clarity, we use NPM as a reference schedule that represents the schedule of
given set of jobs J without incorporating DVFS. This means that all jobs or recoveries in J
are executed under the maximum processor speed Smax. We consider that all the plotted energy
consumptions are normalized to NPM. However, to give LPSSR a fair chance, we consider the
same parameters as used in [90]. Hence, we consider the following parameters: We assumed that
α = 2, Cef = 1, Pind = 0.05, and Smin is set to 0.25.
The proposed algorithms are tested with job sets randomly generated as follows: the choice of
the arrival time ai and the relative deadline of each job Ji is uniformly distributed in the interval
[0s, 100s] and [50s, 100s] respectively. Moreover, the worst case execution time ci is randomly
generated such that ci < di. The timing and energy overhead of detecting faults is considered as
10% of the worst case execution time and its energy consumption respectively. As for the fault
arrival rate, we consider 2 cases: safety-critical real-time system with range of 10−10 to 10−5 /hour
or in harsh environment with a range between 10−2 and 102 /hour.

All simulation results are computed on a discrete DVFS processor that operates on 8 frequency
levels {1.00, 0.86, 0.76, 0.67, 0.57, 0.47, 0.38, 0.28} as in the PentiumM processor.

We report here two sets of experiments. The first set is designed to show the energy con-
sumption of the 4 approaches by varying the number of jobs. In the second experiment set-up,
we compare the energy consumption by varying the number of faults.

52

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

Number of Jobs

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

LPSSR MES−DVFS EMES−DVFS NPM

Figure 5.1: Energy savings by varying the numbers of jobs, k = 1.

5.5.1 Experiment 1: Energy Consumption by Varying the Number of Jobs

First, we take interest in how energy saving performance changes with the number of jobs.
We report here the results of four simulation studies where the fault rate is set to 10−5 and the
number of jobs varies from 10 to 50. Further, we consider that the number of faults in our job
set is no more than 1 (k = 1). For each job set, we compute the normalized energy consumption
metric of the speed schedule by each of the four schedulers. The energy consumption metric is
normalized with respect to the NPM scheme, which executes all jobs at Smax. Figure 5.1 shows
the expected energy consumption of EMES-DVFS and MES-DVFS versus previous schedulers like
NPM and LPSSR.

From figure 5.1, we find that the energy consumption of the four schedulers increases as the
number of jobs becomes larger. This is reasonable since the likelihood of having large slack time
that can be used for DVFS is diminishing as the number of jobs increases. Further, the gain in
energy saving provided by EMES-DVFS and MES-DVFS schemes is significant since it can benefit
from the optimal amount of slack time that minimizes the expected energy consumption. In other
words, EMES-DVFS and MES-DVFS can effectively assign the speeds to each job in such way
that the job set becomes feasible at a speed closest to the critical speed.

When the number of jobs is low, we find that the energy savings achieved by all three algorithms
are almost the same. This is because most jobs are executed at the lowest speed. With the
increasing the number of jobs, our approach starts to show its advantage and achieve high energy
saving. In average, additional 51% and 20% energy saving can be achieved by EMES-DVFS
when compared with NPM and LPSSR, respectively. Further, the energy consumption difference
is around 12% between EMES-DVFS can MES-DVFS, since in the EMES-DVFS scenario, the
re-execution of one faulty job is performed at maximum frequency and subsequent slack is left for
DVFS.

53

5.5 Simulation Results

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Number of Faults

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

NPM LPSSR MES−DVFS EMES−DVFS

Figure 5.2: Energy savings by varying the numbers of faults.

We conclude that our approach gains more energy savings in a sense that it can explore the
slacks generated during run-time and hence it can use all the available slack time. This results in
more opportunities for backups reclaim and DVFS.

5.5.2 Experiment 2: Energy Consumption by Varying the Number of Faults

In this set of simulations, we evaluated the impact of the number of faults on energy savings.
In this simulation, we fix the number of jobs to 15 and the number of faults to be tolerated varies
between 1 and 10. Again, 100 different test cases were generated for simulations with the same
number of fault. The average results are shown in figure 5.2.

From the figure 5.2, we can find that EMES-DVFS and MES-DVFS can achieve energy sav-
ings compared to LPSSR and NPM. Clearly, we find that the energy consumptions by the four
schedulers increase rapidly as the number of faults increases, since more expected energy may be
consumed due to the increased number of recovery jobs being executed, which in turn limits the
maximum amount of dynamic slack used. However, as the number of faults increases, the energy
consumption in EMES-DVFS and EMES-DVFS grows but less dramatically.

As illustrated in figure 5.2, the EMES-DVFS and MES-DVFS approaches attain respectively
around 19% and14% more energy saving than LPSSR. The reason is that the optimal dynamic
slack time to minimize the expected energy consumption is used to the maximum extent by
employing speed assignment on the fly. On the contrary, LPSSR is significantly affected by the
increasing number of faults in the system and more than 22% additional energy is consumed when
fault occurrences increase from 1 to 10. On the other hand, EMES-DVFS could tolerate up to 5

times more faults with same energy as consumed by LPSSR.
As a conclusion, the advantage of our approaches (EMES-DVFS and MES-DVFS) over the

other two (LPSSR and NPM) in terms of energy savings is evident in this experiment where

54

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

0 0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Pind

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

NPM LPSSR MES−DVFS EMES−DVFS

Figure 5.3: Energy savings by varying Pind.

EMES-DVFS and MES-DVFS can still guarantee tolerance even under 10 faults and with more
energy saving than LPSSR and the energy savings drops around 19% under LPSSR when we
compare it with EMES-DVFS.

5.5.3 Experiment 3: Energy Consumption by Varying Pind

In this experiment, we study the impact of frequency-independent power Pind on energy sav-
ings. Pind varies between [0, 0.3] for each job and the number of jobs is fixed at 15. According to
figure 5.3 , the larger the Pind, the higher the energy consumption. This is due to the fact that as
the Pind increases, the contribution of frequency independent energy consumption becomes more
dominant, the energy-efficient frequency increases and consequently DVFS has fewer opportunities
to be applied. Even under this situation, EMES-DVFS still has the best performance in terms of
energy consumption (EMES-DVFS attains approximately 18% more energy saving than LPSSR).

5.5.4 Experiment 4: Percentage of feasible Job Set

In this experiment, we take interest in the percentage of feasible job set that respect their
deadlines with the four scheduling algorithms by varying the energy storage capacity. From this
experiment, we can deduce two measures. The first one gives us an indication about the percentage
of time during which all deadlines are still respected. The second one gives, for each approach
and for a given processor load, the minimum size of the storage that ensures time and energy
feasibility. We report here the results of two simulation studies where the processor load is set to
0.4 and 0.8, respectively.

Figure 5.4 depicts the percentage of feasible job sets that meet their deadlines over the energy
storage capacity C. For each job set, we compute the minimum storage capacity Cmin which

55

5.6 Conclusions

1 1.5 2 2.5 3 3.5
20

40

60

80

100

120
(a) Processor load = 0.4

C/Cmin

%
 o

f F
ea

si
bl

e
Jo

b
S

et

1 1.2 1.4 1.6 1.8 2 2.2
40

60

80

100

120
(b) Processor load = 0.8

C/Cmin

%
 o

f F
ea

si
bl

e
Jo

b
S

et

NPM
LPSSR
MES−DVFS
EMES−DVFS

NPM
LPSSR
MES−DVFS
EMES−DVFS

Figure 5.4: Percentage of feasible job set. (a) Low processor load. (b) High processor load.

permits achieving time and energy feasibility under EMES-DVFS. We then begin to increase the
energy storage capacity till the 4 approaches achieve neutral operation.

Under low processor load (figure 5.4a), it is observed that 100% of job sets meet their deadlines
under EMES-DVFS when the energy storage capacity is 4510 energy units, i.e. C = Cmin = 4510

energy units. We start then to increase C till it reaches 8118 where MES-DVFS becomes feasible.
this means that means that EMES-DVFS can provide the same level of performance with a storage
unit which is about 1.8 times less. The increase in the storage capacity will continue to increase
till LPSSR and NPM becomes feasible where the energy storage unit must be respectively more
than 2.2 and 3.8 times bigger with LPSSR and NPM to maintain zero deadline miss, compared
with EMES-DVFS.

The results for high processor load (figure 5.4b) follow the same trend. Unlike the previous
experiment, the relative performance gain of EMES-DVFS in terms of capacity savings is decreas-
ing when the processor load is increasing. EMES-DVFS obtains respectively capacity savings of
about 37%, 44% and 57% compared with MES-DVFS, LPSSR and NPM.

It is important here to note that the four approaches require exactly the same storage size
when the processor load is equal to 1 since the processor is continuously busy and there is no
chance to apply DVFS.

In summary, this experiment points out that the proposed EMES-DVFS approach is very
effective in reducing deadline miss rate and storage size even under high processor load. And lower
is the processor load rate, higher is the capacity saving and our approach will then outperform
the others by a high amount of energy savings.

5.6 Conclusions

In this chapter, we presented and evaluated a novel approach, which aims to minimize energy
consumption when scheduling a set of real-time jobs that can tolerate up to k transient faults while
still respecting time and energy constraints. We explore the reserved slacks generated during run-
time to the maximum extent in such a way that all the available slack time is used for energy
reduction, which is carried out using dynamic voltage and frequency scaling (DVFS). Under this
notion, we propose an algorithm that estimates an optimal speed reduction mechanism which

56

Chapter 5. Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems

maintains feasibility within predefined timing constraints when no more than k faults occur.
Our scheduler dynamically adjusts the jobs’ slowdown factors by utilizing run-time slacks

which may be increased for recovery demands of the system. It differs from the existing approach
where job frequencies assignments are predetermined, and hence it is more flexible and adaptive
in minimizing energy consumption while still keeping the system’s reliability at a desired level. In
addition, we presented two feasibility tests for recovery schemes under variable processor speed
which decouples the time and energy constraints. The experimental results demonstrate that
the proposed algorithm can significantly improve the energy savings compared with the previous
works.

57

Conclusions

The research presented in this thesis deals with designing scheduling algorithms with the
objective of minimizing energy consumption when scheduling a set of real-time jobs that can
tolerate up to k transient faults while still respecting time and energy constraints on uniprocessor
systems. For this sake, wo proposed two scheduling algorithms: The first algorithm is an extension
of an optimal fault-free low-power scheduling algorithm, named ES-DVFS. The second algorithm
aims to enhance the energy saving by reserving adequate slack time for recovery when faults
strike. The feasibility of the two proposed scheduling schedulers are analyzed for uniprocessor
platforms with the main goal at achieving fault-tolerance and energy autonomy, respectively.
Both algorithms are designed for a dynamic-priority system, more specifically, the EDF priority
policy for a set of implicit-deadline aperiodic jobs.

The presented novel approach, which aims to minimize energy consumption when scheduling
a set of real-time jobs that can tolerate up to k transient faults while still respecting time and
energy constraints, has an optimal speed reduction mechanism that is carried out using dynamic
voltage and frequency scaling (DVFS) and which maintains feasibility within predefined timing
constraints when no more than k faults occur.

The experimental results demonstrate that the proposed algorithm can significantly improve
the energy savings compared with the previous works. In details, we proved that additional 51%
and 20% energy saving can be achieved by EMES-DVFS when compared with NPM and LPSSR,
respectively. Further, the energy consumption difference is around 12% between EMES-DVFS can
MES-DVFS, since in the EMES-DVFS scenario, the re-execution of one faulty job is performed
at maximum frequency and subsequent slack is left for DVFS.

For future work, we will explore the adaptation of the proposed approaches to fixed priority
environments in real-time energy harvesting systems.

59

Bibliography

[1] D. Siewiorek and R. Swarz. Reliable Computer Systems: Design and Evaluation. Natick,
MA: A. K. Peters, Ltd., 1998.

[2] J. Stankovic. Misconceptions about real-time computing. IEEE Computer, 1988.

[3] A. Queudet. Ordonnancement temps reel avec contraintes de qualite de service. These de
Doctorat de l’Universite de Nantes, 2006.

[4] J. W. S. W. Liu. Real-time systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 2000.

[5] G. -C. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time Systems: Pre-
dictability vs. Efficiency. Springer, January 2005.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1), pages 46-61, 1973.

[7] F. Cottet, J. Delacroix, C. Kaiser, and Z.Mammeri. Ordonnancement temps réel. Ed. Her-
mes, 2000.

[8] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems-concepts and design. 2nd
Ed, Addison-Wesley Publishers Ltd, 1994.

[9] J. Leung and M. Merril. A note on preemprive scheduling of periodic real-time tasks. Infor-
mation Processing Letters, pages 11(3) : 115-118, 1980.

[10] J.-P. Lehozcky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithm :exact char-
acterization and average case behaviour. in proceedings of the IEEE Real-Time Systems
Symposium, pages 166-171, 1989.

[11] J.-Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance evaluation, pages 2 :237-250, 1982.

[12] J.-R. Jackson. Scheduling a production line to minimize maximum tardiness. Research Re-
port 43, Management Science Research Project, University of California, Los Angeles, 1955.

[13] M.-L. Dertouzos. Control robotics : the procedural control of physical processes. Information
Processing, pages 2 :237-250, 1974.

[14] S.-K. Baruah, L.-E. Rosier, and R.-R. Howell. Algorithms and complexity : Concerning
the preemptive scheduling of periodic real-time tasks on one processor. Real-Time Systems
Journal, 2(4), pages 301-324, 1990.

61

BIBLIOGRAPHY

[15] W. Wolf. Computers and components : Principles of embedded computing system design.
Morgan Kaufman Publishers, 2000.

[16] R. Casas and O. Casas. Battery sensing for energy-aware system design. In Computer, vol.38,
no. 11, pages 48-54, 2005.

[17] A. Reinders. Options for photovoltaic solar energy systems in portable products. TCME
Fourth International symposium, 2002.

[18] N.S. Shenck and J.A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics. In IEEE
Micro, Vol. 21. No. 3, pages 30-42, 2001.

[19] B. Gaujal and N. Navet. Ordonnancement temps réel et minimisation de la consommation
d’énergie, volume 2 of Systèmes temps réel. Hermès, 2006.

[20] L. Benini, A.Bogliolo, and G. D. Micheli. A survey of design techniques for system-level
dynamic power management. In IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 8, no. 3, pages 299-316, 2000.

[21] F. Yao, A. J. Demers, , and S. Shenker. A scheduling model for reduced cpu energy. In IEEE
Symposium on Foundations of Computer Science, pages 374-382. IEEE, 1995.

[22] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Determining optimal processor speeds
for periodic real-time tasks with different power characteristics. In Euromicro Conference on
Real-Time Systems, pages 225-232, 2001.

[23] D. Shin and J. Kim. Dynamic voltage scaling of periodic and aperiodic tasks in priority-
driven systems. In ASPDAC’03, pages 653-658, 2004.

[24] N. Min-allah, Y. Wang, J. Xing, W. Nisar, and A. Kazmi. Towards dynamic voltage scaling
in real-time systems - a survey. In IJCSES International journal of Computer Sciences and
Engineering Systems, Vol.1, No.2, CSES International, 2007.

[25] C. Moser, D. Brunelli, L. Thiele, , and L. Benini. Real-time scheduling with regenerative
energy. In 18th Euromicro Conference Real-Time Systems, 2006.

[26] H. El Ghor, M. Chetto, and R. Hage Chehade. A real-time scheduling framework for em-
bedded systems with environmental energy harvesting. Computers & Electrical Engineering,
37(4) :498-510, 2011.

[27] H. El Ghor, M. Chetto, and R. Hage Chehade. A nonclairvoyant real-time scheduler for
ambient energy harvesting sensors. International Journal of Distributed Sensor Networks,
2013.

[28] A. Avizienis, J.-C. Laprie and B. Randell, Fundamental Concepts of Dependability, in Tech-
nical Report 739, Department of Computing Science, University of Newcastle upon Tyne,
2001.

[29] D.K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall, Inc., 1996.

62

BIBLIOGRAPHY

[30] B. Randell, P. Lee and P.C. Treleaven, Reliability Issues in Computing System Design, in
ACM computing Surveys, vol. 10, issue 2, pp. 123-165, 1978.

[31] I. Koren and C. Krishna, Fault-tolerant systems. Morgan Kaufmann, 2007.

[32] A. Avizienis, Fault-tolerance: The survival attribute of digital systems, Proceedings of the
IEEE, vol. 66, no. 10, pp. 1109-1125, 1978.

[33] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, Dependable and Secure Computing, IEEE Transactions
on, vol. 1, pp. 11–33, Jan 2004.

[34] J.-C. Laprie, Dependable computing and fault tolerance : Concepts and terminology, in Fault-
Tolerant Computing, 1995, Highlights from Twenty-Five Years., Twenty-Fifth International
Symposium on, Jun 1995.

[35] J. Laprie, Dependable computing and fault-tolerance, Digest of Papers FTCS-15, pp. 2–11,
1985.

[36] A. Avizienis and J. Kelly, Fault tolerance by design diversity- concepts and experiments,
Computer, vol. 17, pp. 67–80, 1984.

[37] J. Sosnowski, Transient fault tolerance in digital systems, Micro, IEEE, vol. 14, no. 1, pp.
24–35, 1994.

[38] R. Al-Omari, A. Somani, and G. Manimaran, A new fault-tolerant technique for improving
schedulability in multiprocessor real-time systems, in Parallel and Distributed Processing
Symposium., Proceedings 15th International, IEEE, 2001.

[39] D. Pradhan and N. Vaidya, Roll-forward checkpointing scheme: A novel fault-tolerant ar-
chitecture, Computers, IEEE Transactions on, vol. 43, no. 10, pp. 1163-1174, 1994.

[40] J. Bruno and E. Coffman Jr, Optimal fault-tolerant computing on multiprocessor systems,
Acta Informatica, vol. 34, no. 12, pp. 881–904, 1997.

[41] A. Avizienis, Arithmetic error codes: Cost and effectiveness studies for application in digital
system design, Computers, IEEE Transactions on, vol. C-20, pp. 1322-1331, Nov 1971.

[42] T. R. Rao, Biresidue error-correcting codes for computer arithmetic, Computers, IEEE
Transactions on, vol. C-19, pp. 398-402, May 1970.

[43] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes. Cambridge Univer-
sity Press, 2003.

[44] P. L’Ecuyer and J. Malenfant, Computing optimal checkpointing strategies for rollback and
recovery systems, Computers, IEEE Transactions on, vol. 37, no. 4, pp. 491-496, 1988.

[45] E. Gelenbe and M. Hernández, Optimum checkpoints with age dependent failures, Acta
Informatica, vol. 27, no. 6, pp. 519-531, 1990.

63

BIBLIOGRAPHY

[46] C. Krishna, Y. Lee, and K. Shin, Optimization criteria for checkpoint placement, Commu-
nications of the ACM, vol. 27, no. 10, pp. 1008–1012, 1984.

[47] V. Nicola, Checkpointing and the modeling of program execution time. University of Twente,
Department of Computer Science and Department of Electrical Engineering, 1994.

[48] E. Coffman Jr and E. Gilbert, Optimal strategies for scheduling checkpoints and preventive
maintenance, Reliability, IEEE Transactions on, vol. 39, no. 1, pp. 9-18, 1990.

[49] Y. Ling, J. Mi, and X. Lin, A variational calculus approach to optimal checkpoint placement,
Computers, IEEE Transactions on, vol. 50, no. 7, pp. 699-708, 2001.

[50] A. Mahmood and E. McCluskey, Concurrent error detection using watchdog processors-a
survey, Computers, IEEE Transactions on, vol. 37, no. 2, pp. 160-174, 1988.

[51] A. Ziv and J. Bruck, Analysis of checkpointing schemes with task duplication, Computers,
IEEE Transactions on, vol. 47, no. 2, pp. 222-227, 1998.

[52] J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, and A. Nowatryk, Fingerprinting: bounding
soft-error-detection latency and bandwidth, Micro, IEEE, vol. 24, pp. 22-29, Nov 2004.

[53] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. Scott, A reliability-
aware approach for an optimal checkpoint/restart model in hpc environments, in Cluster
Computing, 2007 IEEE International Conference on, pp. 452–457, 2007.

[54] K. Shin, T. Lin, and Y. Lee, Optimal checkpointing of real-time tasks, Computers, IEEE
Transactions on, vol. 100, no. 11, pp. 1328-1341, 1987.

[55] S. Kwak, B. Choi, and B. Kim, An optimal checkpointing-strategy for real-time control
systems under transient faults, Reliability, IEEE Transactions on, vol. 50, no. 3, pp. 293-
301, 2001.

[56] S. Hiroyama, T. Dohi, and H. Okamura, Comparison of aperiodic checkpoint placement
algorithms, in Advanced Computer Science and Information Technology, vol. 74 of Commu-
nications in Computer and Information Science, pp. 145-156, Springer Berlin Heidelberg,
2010.

[57] S. Hiroyama, T. Dohi, and H. Okamura, Aperiodic checkpoint placement algorithms - survey
and comparison, Journal of Software Engineering and Applications, vol. 6, pp. 41–53, 2013.

[58] T. Ozaki, T. Dohi, and N. Kaio, Numerical computation algorithms for sequential checkpoint
placement, Perform. Eval., vol. 66, pp. 311-326, June 2009.

[59] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):11-33, 2004.

[60] B. W. Johnson. Design & analysis of fault tolerant digital systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1988.

64

BIBLIOGRAPHY

[61] K. G. Shin, and P. Ramanathan, Real-time computing: A new discipline of computer Science
and engineering, Proc. of IEEE Computer, 82(1), 6-24, Jan. 1994.

[62] C. M. Krishna, and Y.H. Lee, Guest-editors’ introduction: Real-time systems, IEEE Com-
puter, 24(5) 10-11, May 1991.

[63] R. M. Kieckhafer, Fault-tolerant real-time task scheduling in the M AFT distributed system,
22nd Hawaii Int’l. Conference on System Sciences, 145-151, Jan. 1989.

[64] H. Kopetz, A. Damm, C. Koza, and Mulozzani, Distributed fault-tolerant real-time systems:
The MARS approach, IEEE Micro, 5(1), 25-40, Feb. 1989.

[65] M. Saksena, J. da Silva, and A. K. Agrawala, Design and implementation of Maruti-II, sang
son ed., Principles of Real-Time Systems, Prentice Hall, 1994.

[66] K. G. Shin, HARTS: A distributed real-time architecture, IEEE Computer, 24(5), 25-35,
May 1991.

[67] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2nd edition, 1990.

[68] J. Srinivasan, A. S.V., B. P., R. J., and C.-K. Hu. Ramp: A model for reliability aware
microprocessor design. IBM Research Report, RC23048, 2003.

[69] X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivation and calibration of a transient
error reliability model. IEEE Trans. Comput., 31:658-671, July 1982.

[70] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and modeling of computer relia-
bility as affected by system activity. ACM Trans. Comput. Syst., 4:214-237, August 1986.

[71] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests. Real-Time
Systems, 30(1-2):129-154, May 2005.

[72] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J.-D. Wellman,
V. Zyuban, M. Gupta, and P. Cook. Power-aware microarchitecture: Design and modeling
challenges for next-generation microprocessors. Micro, IEEE, 20(6):26-44, Nov 2000.

[73] R. Gupta. Dynamic voltage scaling for system-wide energy minimization in real-time em-
bedded systems. Proceedings of the International Symposium on Low Power Electronics and
Design ISLPED ’04, pages 78-81, Aug 2004.

[74] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling for periodic
real-time tasks. IEEE Transactions on Computers, 53(5):584-600, 2004.

[75] H. Aydin, V. Devadas, and D. Zhu. System-level energy management for periodic real-time
tasks. In Proc. of IEEE Real-Time Systems Symposium (RTSS), pages 313–322, Dec. 2006.

[76] V. Devadas and H. Aydin. On the interplay of dynamic voltage scaling and dynamic power
management in real-time embedded applications. In Proc. ACM Conference on Embedded
Systems Software (EMSOFT’08), 2008.

65

BIBLIOGRAPHY

[77] D. Siewiorek and R. Swarz. Reliable Computer Systems: Design and Evaluation. Natick,
MA: A. K. Peters, Ltd., 1998.

[78] Srinivasan J, Adve SV, Bose P, Rivers J, Hu CK. Ramp: A model for reliability aware
microprocessor design. IBM Research Report, RC23048, 2003.

[79] Castillo X, McConnel SR, Siewiorek DP. Derivation and calibration of a transient error
reliability model. IEEE Trans Comput 31:658–671, 1982.

[80] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Founda-
tions of Computer Science, Proceedings., 36th Annual Symposium on, pages 374-382, oct
1995.

[81] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in fixed-
priority real-time embedded systems. In Proceedings of the 2003 IEEE/ACM international
conference on Computer-aided design, ICCAD’03, 2003.

[82] H. Huang and G. Quan. Leakage aware energy minimization for real-time systems under
the maximum temperature constraint. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pages 1-6, March, 2011.

[83] Hussein El Ghor, E. M. Aggoune. Energy efficient scheduler of aperiodic jobs for real-time
embedded systems, International Journal of Automation and Computing, pages 1-11, 2016.

[84] Hussein EL GHOR, Maryline CHETTO. Energy Guarantee Scheme for Real-time Systems
with Energy Harvesting Constraints. International Journal of Automation and Computing,
to appear.

[85] Baoxian Zhao, Hakan Aydin and Dakai Zhu. Energy Management under General

Task-Level Reliability Constraints. IEEE 18th Real Time and Embedded Technol-
ogy and Applications Symposium, 2012.

[86] Zhu D, Melhem R, Mosse D. The effects of energy management on reliability in real-time
embedded systems. In: ICCAD ’04, Proceedings of the 2004 IEEE/ACM International con-
ference on Computer-aided design, IEEE Computer Society, Washington, DC, pp 35-40,
2004.

[87] R. Melhem, D. Mosse, and E. Elnozahy. The interplay of power management and

fault recovery in real-time systems, IEEE Transactions on Computers, 53(2):217-
231, Feb 2004.

[88] Y. Zhang and K. Chakrabarty. A unified approach for fault tolerance and dynamic power
management in fixed-priority real-time embedded systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(1):111-125, jan. 2006.

[89] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy management for real-
time embedded applications. In 48th ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 381-386, june 2011.

66

BIBLIOGRAPHY

[90] Qiushi Han, Linwei Niu, Gang Quan, Shaolei Ren and Shangping Ren. Energy efficient
fault-tolerant earliest deadline first scheduling for hard real-time systems. Real-Time Systems
50:592-619, 2014.

[91] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In Proc. of
The HICSS Conference, Jan. 1995.

[92] J. W. S. W. Liu. Real-time Systems, NJ, USA: Prentice Hall, 2000.

[93] P. Hazucha and C. Svensson. Impact of cmos technology scaling on the atmospheric neutron
soft error rate. IEEE Trans. on Nuclear Science, 47(6) 2586-2594, 2000.

[94] Pradhan DK. Fault-tolerant computer system design. Prentice-Hall Inc, Upper Saddle River,
1996.

[95] Aydin H. Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Trans Comput

56(10):1372-1386, 2007.

[96] Han, Qiushi, Energy-aware Fault-tolerant scheduling for Hard Real-time Systems. FIU Elec-
tronic Theses and Dissertations, 2015.

[97] Huang, K., Santinelli, L., Chen, J., Thiele, L., Buttazzo, G. Adaptive dynamic power man-
agement for hard real-time systems. In: Proceedings of the IEEE Real-Time Systems Sym-
posium, 2009.

[98] Shin, Y., Choi, K. Power conscious fixed priority scheduling for hard real-time systems. In:
Proceedings of the DAC, 1999.

[99] Gruian, F. Hard real-time scheduling for low-energy using stochastic data and dvs processors.
In: Proceedings of the International Symposium on Low Power Electronics and Design, pp.
46–51. , 2001.

[100] Pop, P., Poulsen, K., Izosimov, V., Eles, P. Scheduling and voltage scaling for energy/relia-
bility trade-offs in fault-tolerant time-triggered embedded systems. In: Proceedings of the 5th
IEEE/ACM International Conference on Hardware/Software Codesign and System Synthe-
sis, 2007.

[101] Saewong, S., Rajkumar, R. Practical voltage-scaling for fixed-priority rts ystems. In: Pro-
ceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium,
2003.

[102] Krishna, C., Lee, Y. Voltage-clock-scaling adaptive scheduling techniques for low power in
hard real-time systems. IEEE Transactions on Computers 52 (12), 1586-1593, 2003.

[103] Perathoner, S., Chen, J., Lampka, K., Stoimenov, N., Thiele, L. Combining optimistic and
pessimistic dvs scheduling: an adaptive scheme and analysis. In: IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2010.

[104] Zhao, B., Aydin, H., Zhu, D. Enhanced reliability-aware power management through shared
recovery technique. In: Proceedings of the ICCAD, pp. 63–70, 2009.

67

BIBLIOGRAPHY

[105] Iqbal, N., Siddique, M., Henkel, J. Seal: Soft error aware low power scheduling by monte
carlo state space under the influence of stochastic spatial and temporal dependencies. In:
Proceedings of the ICCAD, pp. 134-139, 2011.

[106] Zhu, D., Aydin, H., Chen, J. Optimistic reliability aware energy management for real-time
tasks with probabilistic execution times. In: Proceedings of the Real-Time Systems Sympo-
sium, 2008.

[107] Pop, P., Poulsen, K., Izosimov, V., Eles, P. Scheduling and voltage scaling for energy/relia-
bility trade-offs in fault-tolerant time-triggered embedded systems. In: Proceedings of the 5th
IEEE/ACM International Conference on Hardware/Software Codesign and System Synthe-
sis, 2007.

[108] Shafik, R., Al-Hashimi, B., Chakrabarty, K. Soft error-aware design optimization of low
power and time-constrained embedded systems. In: The Proceedingsof the DATE, 2010.

[109] Zhang, Y., Chakrabarty, K., Swaminathan, V. Energy-aware fault tolerance in fixed-priority
real-time embedded systems. In: Proceedings of the ICCAD, 2003.

[110] V., Pop, P., Eles, P., Peng, Z. Scheduling of fault-tolerant embedded systems with soft and
hard timing constraints. In: Proceedings of the DATE, 2008.

[111] Lehoczky, J., Sha, L., Ding, Y. The rate monotonic scheduling algorithm: exact characteri-
zation and average case behavior. In: IEEE Real-Time Systems Symposium, 1989.

[112] Contreras, G., Martonosi, M., Peng, J., Ju, R., Lueh, G., Xtrem. A power simulator for the
intel xscale core. In: ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, 2004.

68

BIBLIOGRAPHY

5.6.0.0.0.1

69

	Acknowledgements
	Abstract
	General Introduction
	State of Art
	Real-time Systems
	The Concept of Real-Time
	Specificities of Real-Time Systems
	Definitions and Major Characteristics
	Taxonomy of Real-Time Systems

	Characterization and Modeling of Real-Time Tasks
	Definitions
	Job Model
	Modeling Real-Time Tasks
	Model of Periodic Tasks
	Model of Aperiodic Tasks

	Formulation of the Real-Time Scheduling Problem
	Categories of Real-Time Scheduling
	Properties of Scheduling Algorithms

	Scheduling of Periodic Tasks
	Scheduling with Fixed Priorities
	Rate Monotonic Algorithm
	Deadline Monotonic Algorithm

	Scheduling with Dynamic Priorities
	Earliest Deadline First Algorithm

	Conclusion

	Real-Time Scheduling Under Energy Constraints
	Embedded Systems
	Definition
	Wireless Sensor Network (WSN)

	Energy Storage
	Energy Storage Elements
	Battery
	Supercapacitor

	Problem of Autonomy of Embedded Systems
	Need for New Terminology
	Scheduling with energy clairvoyance:
	Scheduling with time clairvoyance:
	Total clairvoyant scheduling:
	Temporally feasible scheduling:
	Schedulable task configuration:

	Need for a Task Model Adapted to Energy Constraints
	Need for Specific Scheduling Policies

	Existing Scheduling Policies
	Approaches to Minimize Energy Consumption
	Dynamic Power Management (DPM)
	Dynamic Voltage and Frequency Scaling (DVFS)

	Approach to Energy Autonomy
	Optimal LSA Scheduling Algorithm
	EDeg Scheduling Algorithm
	Principle of EDeg:
	Description of the Algorithm:
	Performance of the EDeg Scheduler:

	Energy Saving-Dynamic Voltage and Frequency (ES-DVFS) Algorithm
	Computing the Minimum Constant Speed for Each Job

	Conclusion

	Fault-Tolerant Real-Time Systems
	Introduction
	Background on Fault Tolerance
	Fault Tolerant Techniques
	Previous Work
	Summary

	Energy-Aware Fault-Tolerant Real-Time Scheduling for Embedded Systems
	Introduction
	Related Work
	Model and Terminology
	Task Model
	Power and Energy Model
	Energy Storage Model
	Fault Model
	Terminology
	Problem Formulation

	Fault Tolerant Speed Schedule
	Overview of the Scheduling Scheme
	Concepts for the EMES-DVFS Model
	Description of the EMES-DVFS Scheduler
	Feasibility Analysis

	Simulation Results
	Experiment 1: Energy Consumption by Varying the Number of Jobs
	Experiment 2: Energy Consumption by Varying the Number of Faults
	Experiment 3: Energy Consumption by Varying Pind
	Experiment 4: Percentage of feasible Job Set

	Conclusions

	Conclusions

